• Title/Summary/Keyword: Meteorological Drought

Search Result 236, Processing Time 0.024 seconds

Hydrometeorological Characteristics and The Spatial Distribution of Agricultural Droughts (농업가뭄의 수문기상학적 특성 및 공간적 분포에 관한 연구)

  • Jang, Jung seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.105-115
    • /
    • 2019
  • For 159 administrative areas, SPI(Standardized Precipitation Index), ARDI(Agricultural Reservoir Drought Index) and ARDIs(Agricultural Reservoir Drought Index Simulated) were developed and applied to analyze the characteristics of agricultural drought index and agricultural droughts. In order to identify hydrometeorological characteristics of agricultural droughts, SPI, ARDI and ARDIs were calculated nationwide, and the applicability was compared and examined. SPI and ARDI showed significant differences in time and depth of drought in both spatial and temporal. ARDI and ARDIs showed similar tendency of change, and ARDIs were considered to be more representative of agricultural drought characteristics. The results of this study suggest that agricultural drought is a problem to be solved in the medium and long term rather than short term due to various forms of development, complexity of development, and difficulty in forecasting. Therefore, it is concluded that a preliminary and systematic approach is needed in consideration of meteorological, hydrological and hydrometeorological characteristics rather than a fragmentary approach, and that an agricultural drought index is needed to quantitatively evaluate agricultural drought.

Investigating the Effects of Meteorological Disasters on Hydroelectric Power Generation Using a Structural Equation Modeling (구조방정식모형을 이용한 기상재해가 수력발전을 통한 전력 생산에 미치는 영향 분석)

  • Kim, Jiyoung;Byun, Sung ho;Yoo, Jiyoung;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • Recently, global warming has accelerated climate change, increased extreme weather phenomena, and increased the frequency and intensity of weather disasters, leading to increasing uncertainty about the power production of new and renewable energy that is sensitive to weather. In fact, it has been reported that a number of damage to hydroelectric power generation have occurred due to weather disasters. Therefore, using the hydroelectric power generation performance data of Chungju Dam, meteorological data of Chungju Meteorological Observatory, and operation data of Chungju Dam, this study investigated the effect of meteorological disasters on hydroelectric power generation through structural equation modeling considering the number and intensity of meteorological disasters per month. The results indicated that the increased drought occurrence affected the decreased hydroelectric power generation by about 38.3 %, however the increased hydroelectric power generation could not explained by the increased flood occurrence. In conclusion, an increased drought occurrence in future may significantly influence hydroelectric power generation.

Evaluating Impact Factors of Forest Fire Occurrences in Gangwon Province Using PLS-SEM: A Focus on Drought and Meteorological Factors (PLS-SEM을 이용한 강원도 산불 발생의 영향 요인 평가 : 가뭄 및 기상학적 요인을 중심으로)

  • Yoo, Jiyoung;Han, Jeongwoo;Kim, Dongwoo;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.209-217
    • /
    • 2021
  • Although forest fires are more often triggered by artificial causes than by natural causes, the combustion conditions that spread forest fire damage over a large area are affected by natural phenomena. Therefore, using partial least squares structural equation modeling (PLS-SEM), which can analyze the dependent and causal relationships between various factors, this study evaluated the causal relationships and relative influences between forest fire, weather, and drought, taking Gangwon Province as our sample region. The results indicated that the impact of drought on forest fires was 27 % and that of the weather was 38 %. In addition, forest fires in spring accounted for about 60 % of total forest fires. This indicatesthat along with meteorological factors, the autumn and winter droughts in the previous year affected forest fires. In assessing the risk of forest fires, if severe meteorological droughts occur in autumn and winter, the probability of forest fires may increase in the spring of the following year.

The Assessment of Socioeconomic Droughts Using a Water Excess Deficiency Index (용수과부족지수(WEDI)를 이용한 사회경제학적 가뭄평가)

  • Yoo, Ji Young;Park, Jong Yong;Kim, Tae-Woong;Park, Moo Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.253-264
    • /
    • 2011
  • Drought assessment is usually performed qualitatively and/or quantitatively after defining a drought from meteorological, agricultural, hydrological, and socioeconomic perspective. Most of the drought analyses focus on meteorological, agricultural, and hydrological droughts, whereas the socioeconomic drought evaluation has been not actively performed since it needs different aspects. In this study, after defining a socioeconomic drought applicable to assess droughts in Korea, we suggested Water Excess Deficiency Index (WEDI) as an useful tool to evaluate socioeconomic droughts, based on water demand condition and water supply condition. This study verified the validity of WEDI by comparing with other drought indices (SPI, PDSI) and historical drought condition in Gyeongsang-do in 2001. The results indicated that the WEDI can be used to assess regional droughts in a socioeconomic perspective.

Calcualtion and Comparison of Drought Indices on Major Weatehr Stations in Korea (우리 나라 주요 지점에 대한 가뭄지수의 산정과 비교)

  • 김상민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.43-52
    • /
    • 1999
  • In an effort to identify quantitatively historical drought conditions, and to evaluate their temporal and spatial variability , two commonly used drougth indices, the standardized precipitation index, SPI by Mckee and the Palmer drought severity index. PDSI were calculated from 54 meteorological stations, SPI was evaluated for different time scales, 3 to 48 months. As the compjtational spans for SPI increase from 3 to 48 months the frequency and intensity of drought decrease, but the duration of drought increase. When monthly and ten-day PDSIs were compared, the frequency and duratin of drought were almost equal and the intensity of drought differ slightly. The three month SPI has the advatage to detect the drought resulting from short-term shortage of rainfall, while PDSI had the advantage to detect the state of drought resulting from cumulated shortage of rainfall. The period-frequency spectrum analyses at Kangnung statino showed that the maximum value of relative frequency was 24.4% when the period was 5.2months, and the 6month SPI has most similar trends to PDSI.

  • PDF

Agricultural Drought Risk Assessment using Reservoir Drought Index (저수지 가뭄지수를 활용한 농업가뭄 위험도 평가)

  • Nam, Won Ho;Choi, Jin Yong;Jang, Min Won;Hong, Eun Mi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.41-49
    • /
    • 2013
  • Drought risk assessment is usually performed qualitatively and quantitatively depending on the definition a drought. The meteorological drought indices have a limit of not being able to consider the hydrological components such as evapotranspiration, soil moisture and runoff, because it does not consider the water demand in paddies and water supply in reservoirs. Agricultural drought was defined as the reservoir storage shortage state that cannot satisfy water requirement from the paddy fields. The objectives of this study were to suggest improved agricultural drought risk assessment in order to evaluate of regional drought vulnerability and severity studied by using Reservoir Drought Index (RDI). The RDI is designed to simulate daily water balance between available water from agricultural reservoir and water requirement in paddies and is calculated with a frequency analysis of monthly water deficit based on water demand and water supply condition. The results indicated that RDI can be used to assess regional drought risk in agricultural perspective by comparing with the historical records of drought in 2012. It can be concluded that the RDI obtained good performance to reflect the historical drought events for both spatially and temporally. In addition, RDI is expected to contribute to determine the exact situation on the current drought condition for evaluating regional drought risk and to assist the effective drought-related decision making.

Developing Model of Drought Climate Scenarios for Agricultural Drought Mitigation (농업가뭄대응을 위한 가뭄기상시나리오 모델 개발 및 적용)

  • Yoo, Seung-Hwan;Choi, Jin-Yong;Nam, Won-Ho;Kim, Tae-Gon;Go, Gwang-Don
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.67-75
    • /
    • 2012
  • Different from other natural hazards including floods, drought advances slowly and spreads widely, so that the preparedness is quite important and effective to mitigate the impacts from drought. Evaluation and forecast the status of drought for the present and future utilizing the meteorological scenario for agricultural drought can be useful to set a plan for agricultural drought mitigation in agriculture water resource management. In this study, drought climate scenario model on the basis of historical drought records for preparing agricultural drought mitigation was developed. To consider dependency and correlation between various climate variables, this model was utilized the historical climate pattern using reference year setting of four drought levels. The reference year for drought level was determined based on the frequency analysis result of monthly effective rainfall. On the basis of this model, drought climate scenarios at Suwon and Icheon station were set up and these scenarios were applied on the water balance simulation of reservoir water storage for Madun reservoir as well as the soil moisture model for Gosam reservoir watershed. The results showed that drought climate scenarios in this study could be more useful for long-term forecast of longer than 2~3 months period rather than short-term forecast of below one month.

ANALYSIS OF DROUGHT PHENOMENA USING MODIS NORMALIZED DIFFERENCE VEGETATION INDEX AND LAND SURFACE TEMPERATURE PRODUCTS

  • Park Jung-Sool;Kim Kyung-Tak;Lee Kyo-Sung;Kim Joo-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.193-196
    • /
    • 2005
  • As global warming proceeds, South Eastern Asia is undergoing drought, and the harshness of drought in the middle area of Korea is increasing. Especially, there has been the worst spring drought in 2001 since the first meteorological observation, and the damages caused by that drought are being ana lysed in various ways. In this study, spectral indices derived from satellites are used to examine 2001 spring drought, and the application of MODIS Data products as the quantitative tool to analyse drought in the future is examined.

  • PDF

Climate Change Impacts on Meteorological Drought and Flood (기후변화가 기상학적 가뭄과 홍수에 미치는 영향)

  • Lee, Dong-Ryul;Kim, Ung-Tae;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.4
    • /
    • pp.315-328
    • /
    • 2004
  • Recent increase of green house gases may increase the frequency of meteorological extremes. In this study, using the index and meteorological data generated by the Markov chain model under the condition of GCM predictions, the possible width of variability of flood and drought occurrences were predicted. As results, we could find that the frequency of both floods and droughts would be increased to make the water resources planning and management more difficult. Thus, it is recommended to include the effect of climate change on water resources in the related policy making.

Drought index forecast using ensemble learning (앙상블 기법을 이용한 가뭄지수 예측)

  • Jeong, Jihyeon;Cha, Sanghun;Kim, Myojeong;Kim, Gwangseob;Lim, Yoon-Jin;Lee, Kyeong Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1125-1132
    • /
    • 2017
  • In a situation where the severity and frequency of drought events getting stronger and higher, many studies related to drought forecast have been conducted to improve the drought forecast accuracy. However it is difficult to predict drought events using a single model because of nonlinear and complicated characteristics of temporal behavior of drought events. In this study, in order to overcome the shortcomings of the single model approach, we first build various single models capable to explain the relationship between the meteorological drought index, Standardized Precipitation Index (SPI), and other independent variables such as world climate indices. Then, we developed a combined models using Stochastic Gradient Descent method among Ensemble Learnings.