• Title/Summary/Keyword: Metaphase chromosome

Search Result 114, Processing Time 0.025 seconds

Study of Karyotype , Meiosis and Isozyme of Hybrid from cross Lilium longiflorum x L. X elegans (Lilium longiflorum $\times$ L. X elegans 의 자방배양에 의해 얻어진 잡종 F$_1$의 핵형 , 감수분열 및 lsozyme에 대한 연구)

  • 윤의수
    • Korean Journal of Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.80-87
    • /
    • 1988
  • Hybries which was made up by chromosome of L. longiflorum and L. x elegans, using root-tip individual which was obtained through ovary slice culture, and root-tip of these parents, with hoirugen staining, gimsa staining and Q-H staining inaccordance with the location and the existence of secondary construction which waslocating near short arm centromere of No, 1,2,6,9. In metaphase of meiosis ofhybrid which was made up by univalent from 2 individuals to 10 individuals wasobserved, and nuclear plate which was having abnormal type's synthesis amounted to91% of all cells whieh were observed. This result showed the fact that someobstacle arose annormal progress of the divission after that time. 63% of the cellshad micronucleus from 1 individlial to 4 individuals in tetrad phase of meiosisdivision. The peroxidase and $\alpha$ -estelase zymogram phenotypes of parents andhybrids were determined using agarlose IEF gel. Crosses were performed betweenparents bearing dissimilar allelomorphs in orther to discern the genetic control ofthe resolved enzymes. Genetic variation of hybrids were detected at all but 2 plant progenies.

  • PDF

Karyokinesis in Embryos of far Eastern Catfish, Silurus asotus (메기 Silurus asotus 발생난의 핵분열)

  • 임재현;박인석;정지혜;김동수
    • Journal of Aquaculture
    • /
    • v.15 no.4
    • /
    • pp.275-277
    • /
    • 2002
  • To obtain baseline data required for ploidy induction in Silurus asotus, a species with enormous aquacultural potential, histological events related to early embryonic development at 24$\pm$0.5$^{\circ}C$ are described. The histological location of the one-celled embryos indicated that metaphase stage of the first cleavage occurs at 31 min after insemination, when the highest yield can be obtained for the chromosome set manipulation.

Effect of Zebularine Soaking on the Early Growth Stage and Mitotic Chromosomes of Barley (Hordeum vulgare L.) (제부라린의 침종처리가 보리 생육초기 생장 및 체세포 염색체에 미치는 영향)

  • Han, Ji-Yoon;Kang, Seong-Wook;Chun, JaeBuhm;Kim, Yang-Kil;Yoon, Young-Mi;Cho, Seong-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • The objective of this study was to identify the effect of zebularine soaking on the early growth stage of barley (Hordeum vulgare L.). Hence, root elongation was measured daily according to the different concentrations of zebularine (1.0, 2.5, 5.0, and 10.0 μM) for 4 days. On the first day, root length at 2.5 and 5.0 μM was significantly longer than that in the non-treated control. On the second day, root length was not significantly different among all concentrations and controls. On the third day, root elongation was suppressed by the effect of zebularine, except at 2.5 μM. The treatment time of zebularine accounted for the largest proportion of the variation in root elongation. After transplanting, plant growth velocity was similar to that of the control; however, plants at 2.5 μM showed faster growth velocity than that of the other concentrations and the control. In the metaphase of mitosis, most chromosomes of cells under zebularine treatment were ordinary regardless of the concentration, while some cells with short chromosomes were investigated at around 2%. The short chromosome showed a centromere. In addition, it showed short and long arms based on the centromere. The lengths of the short and long arms were different for each short chromosome. It is necessary to study the effect of the short chromosome as a chromosomal function on plant growth and phenotype through investigation of meiosis and fertilization at the chromosome level.

Recent Advancement on the Knowledges of Meiotic Division (I) (減數分裂, 最近의 進步(I))

  • 한창열
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.6
    • /
    • pp.453-475
    • /
    • 1998
  • During the 100 years since the initial discovery of meiotic phenomenon many brilliant aspects have been elucidated, but further researches based on light microscopy alone as an experimental tool have been found to have some limits and shortcomings. By the use of electron microscopy and armed with the advanced knowledges on modern genetics and biochemistry it has been possible to applu molecular technology in gaining information on the detailed aspects of meiosis. As synapsis takes place, a three-layered proteinous structure called the synatonemal complex starts to form in the space between the homologous chromosomes. To be more precise, it begins to form along the paired chromosomes early in the prophase I of meiotic division. The mechanism that leads to precise point-by-point pairing between homologous chromocomes division. The mechamism that leads to precise point-by-point pairing between homologous chromosomes remains to be ascertained. Several items of information, however, suggest that chromsome alignment leading to synapsis may be mediated somehow by the nuclear membrane. Pachytene bivalents in eukaryotes are firmly attached to the inner niclear membrane at both termini. This attached begins with unpaired leptotene chromosomes that already have developed a lateral element. Once attached, the loptotene chromosomes begin to synapse. A number of different models have been proposed to account for genetic recombination via exchange between DNA strands following their breakage and subsequent reunion in new arrangement. One of the models accounting for molecular recombination leading to chromatid exchange and chiasma formation was first proposed in 1964 by Holliday, and 30 years later still a modified version of his model is favored. Nicks are made by endomuclease at corresponding sites on one strant of each DNA duplex in nonsister chromatid of a bivalent during prophase 1 of meiosis. The nicked strands loop-out and two strands reassociate into an exchanged arrangement, which is sealed by ligase. The remaining intact strand of each duplex is nicked at a site opposite the cross-over, and the exposed ends are digested by exonuclease action. Considerable progress has been made in recent years in the effort to define the molecular and organization features of the centromere region in the yeast chromosome. Centromere core region of the DNA duplex is flanked by 15 densely packed nucleosomes on ons side and by 3 packed nucleosomes on the other side, that is, 2000 bp on one side and 400 400 bp in the other side. All the telomeres of a given species share a common DNA sequence. Two ends of each chromosome are virtually identical. At the end of each chromosome there exist two kinds of DNA sequence" simple telpmeric sequences and telpmere-associated sequencies. Various studies of telomere replication, function, and behabior are now in progress, all greatly aided by molecular methods. During nuclear division in mitosis as well as in meiosis, the nucleili disappear by the time of metaphase and reappear during nuclear reorganizations in telophase. When telophase begins, small nucleoli form at the NOR of each nucleolar-organizing chromosome, enlarge, and fuse to form one or more large nucleoli. Nucleolus is a special structure attached top a specific nucleolar-organizing region located at a specific site of a particular chromosome. The nucleolus is a vertical factory for the synthesis of rRNAs and the assenbly of ribosome subunit precursors.sors.

  • PDF

Chk2 Regulates Cell Cycle Progression during Mouse Oocyte Maturation and Early Embryo Development

  • Dai, Xiao-Xin;Duan, Xing;Liu, Hong-Lin;Cui, Xiang-Shun;Kim, Nam-Hyung;Sun, Shao-Chen
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.126-132
    • /
    • 2014
  • As a tumor suppressor homologue during mitosis, Chk2 is involved in replication checkpoints, DNA repair, and cell cycle arrest, although its functions during mouse oocyte meiosis and early embryo development remain uncertain. We investigated the functions of Chk2 during mouse oocyte maturation and early embryo development. Chk2 exhibited a dynamic localization pattern; Chk2 expression was restricted to germinal vesicles at the germinal vesicle (GV) stage, was associated with centromeres at pro-metaphase I (Pro-MI), and localized to spindle poles at metaphase I (MI). Disrupting Chk2 activity resulted in cell cycle progression defects. First, inhibitor-treated oocytes were arrested at the GV stage and failed to undergo germinal vesicle breakdown (GVBD); this could be rescued after Chk2 inhibition release. Second, Chk2 inhibition after oocyte GVBD caused MI arrest. Third, the first cleavage of early embryo development was disrupted by Chk2 inhibition. Additionally, in inhibitor-treated oocytes, checkpoint protein Bub3 expression was consistently localized at centromeres at the MI stage, which indicated that the spindle assembly checkpoint (SAC) was activated. Moreover, disrupting Chk2 activity in oocytes caused severe chromosome misalignments and spindle disruption. In inhibitor-treated oocytes, centrosome protein ${\gamma}$-tubulin and Polo-like kinase 1 (Plk1) were dissociated from spindle poles. These results indicated that Chk2 regulated cell cycle progression and spindle assembly during mouse oocyte maturation and early embryo development.

G-, C-, and NOR-banding of Korean Native Pig Chromosomes (한국재래돼지의 G-, C-, 및 NOR-banding)

  • Sohn, S.H.;Kweon, O.S.;Baik, K.H.;Jung, W.;Cho, E.J.;Kang, M.Y.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.901-910
    • /
    • 2003
  • Using the G-, C-, and NOR-banding techniques, a karyotyping for Korean Native Pig was performed. Blood samples were collected from 50 male Korean Native Pigs that had been bred at the National Livestock Research Institute and then blood cells were prepared from in vitro cultures followed by karyotyping; G-, C-, and NOR-banding patterns of metaphase chromosomes were analyzed. The karyotype of Korean Native Pig is 38, XX or XY which consists of 5 pairs of submetacentric chromosomes(Group I), 2 pairs of acrocentric chromosomes with short p-arm(Group II), 5 pairs of medium metacentric chromosomes(Group III), 6 pairs of acrocentric chromosomes(Group IV) and metacentric X and Y sex chromosomes. On GTG-banding, the Korean Native Pig exhibited a typical and identical banding pattern in each homologous chromosomes. Overall chromosomal morphology and positions of typical landmarks of the Korean Native Pig were virtually identical to those of Committee for the Standardized Karyotype of the Domestic Pig(CSKDP). However, numbers of G-bands of the Korean Native Pig chromosomes were more than those of CSKDP. In chromosomes 1, 3, 5, 6, 7, 8, 13, 14, 15, 16, 17, 18 and X, the Korean Native Pig exhibited more separated bands as compared with CSKDP. In C-banding patterns, although the quantity of heterochromatin was variable in each chromosome, most of the Korean Native Pig chromosomes had heterochromatic C-bands on centromeres. However, the heterochromatic C-band was constantly observed on the whole Y chromosome. In AgNOR staining, the NORs were located at centromeres on the chromosomes 8 and 10. The number of NORs per metaphase ranged from 2 to 4 giving a mean value of 2.13. The number of NORs were distributed on all chromosome pair 10 but not on chromosome 8. The sizes of NORs were also differed between homologous chromosomes 8. Numbers of NORs of Korean Native Pig were significantly higher than those of Yorkshire. The pattern of pig NORs was polymorphic in breeds, individuals and cells, especially on chromosome 8.

Cytogenetic Analyses of Astragalus Species (황기류 식물 3종의 세포유전학적 분석)

  • Kim, Soo-Young;Choi, Hae-Woon;Kim, Chan-Soo;Sung, Jung-Sook;Lee, Joong-Ku;Bang, Jae-Wook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.4
    • /
    • pp.250-254
    • /
    • 2006
  • To elucidate cytogenetic differences, karyotype analysis and FISH (fluorescence in situ hybridization) with 45S and 5S rDNAs were carried out in the three Astragalas species: Astragalas membranaceus Bunge, A. membranaceus var. alpinus Nakai and A. mongholicus Bunge. The somatic metaphase chromosome numbers of all three species were 2n=2x=16 and the size of chromosomes ranged $2.19{\sim} 5.73\;{\mu}m$. The chromosome complement of A. membranaceus consisted of each four pairs of metacentrics (chromosomes 3,4,6 and 7) and submetacentrics (chromosomes 1,2,4 and 8). In A. membranaceus var. alpinus, the chromosome complement consisted of two pairs of metacentrics (chromosomes 4 and 8) and six pairs of submetacentrics (chromosomes 1,2,3,5,6 and 7). A. mongholicus had three pairs of metacentrics (chromosomes 6,7 and 8) and five pairs of submetacentrics (chromosomes 1,2,3,4 and 5). Using bicolor-FISH, one pair of 45S and 5S rDNA signals could be detected on the centromeric regions of chromosomes 8 and 7 of A. membranaceus and A. mongholicus, respectively. In contrast, A, membranaceus var. alpinus had one pair of 45S signals on the centromeric region of chromosome 8 and two pairs of 5S rDNA signals on the short arms of chromosomes 7 and 8.

Cytogenetic Study of Maackia amurensis Rupr. & Maxim. and M. fauriei (Levl.) Takeda Using Karyotyping Analysis and the FISH Technique (핵형분석과 FISH 기술을 이용한 솔비나무와 다릅나무의 세포유전학적 연구)

  • Kim, Soo-Young;Kim, Chan-Soo
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.3
    • /
    • pp.193-198
    • /
    • 2009
  • Chromosome analysis using karyotyping and bicolor FISH were carried out for two Maackia species (M. fauriei and M. amurensis) found in Korea. The somatic metaphase chromosome number was 2n = 2x = 18 in both, and the size of these chromosomes ranged from 3.58 to $5.82{\mu}m$. The chromosome complements consisted of two pairs of metacentric (chromosomes 1 and 7), four pairs of submetacentrics (chromosomes 4, 6, 8 and 9) and three pairs of subtelocentrics (chromosomes 2, 3 and 5) in M. fauriei but, chromosomes 4 (subtelocentric) and 7 (submetacentric) of M. amurensis have different morphology. Using bicolor FISH, a pair of 45S rDNA loci were observed for both M. fauriei and M. amurensis, but the number and site of the 5S rDNA signal were different in the two species. M. fauriei has two pairs of 5S signals on chromosomes 7 and 8 but, M. amurensis has four paris on chromosomes 3, 4, 7 and 7. Hence, the 5S rDNA is a useful FISH for Maackia species.

The Karyotype of Payamphistomum explanatum(Creplin, 1849) Obtained from Korean Cattle (한국산 Paramphistomum explanatum(Creplin, 1849)의 핵형분석)

  • Lee, Jae-Gu;Gang, Chang-Won;Lee, Ho-Il
    • Parasites, Hosts and Diseases
    • /
    • v.24 no.1
    • /
    • pp.42-48
    • /
    • 1986
  • As a series of systematic classification of paramphistomes, in the first step, paramphistomes in the lumen and reticulum were collected on 170 Korean catties (2∼3 years age, male) slaughtered at Jeonju abattoir from July, 1984 to September, 1985 and were classified by means of morphology of the worms. Afterwards, the karyotype of Paramphistomum explanatum (Creplin, 1849) which is the common in Korean cattle was detected by means of modified air-drying method from testis cells of the worm. The following is a brief summary of the leading facts gained through the experiment. 1. Most of the cattle slaughtered at the abattoir were infected with paramphistomes. The 5 species of the worms were detected on 170 Korean cattle and the worm burden per head was from 2 to 784(on the average 170) worms, 120(70.59%) heads out of them involving 2∼100 worms. In 28,900 individuals of paramphistomes obtained on 170 Korean cattle, appearance rates of various worms were as follows : 49.74% in P. explanatum, 48.08% in P. cervi, 0.98% in Orthocoelium orthocoelium, 0.89% in Fischoederius cobboldi and 0.14% in Cotylophoron cotylcphorum. 2. The chromosome number of 620 P. explanatum in the haploid and diploid cells was n=9 and 2n=18, and abundant cells in meiotic division were observed; 1,420 haploid and 38 diploid cells were reliable. Nine pairs of mitotic chromosomes were homologous and the chromosomes were composed of aye medium-sized metacentrics(m), subtelocentrics(st) or submetacentrics(sm) and four smallsized subtelocentrics(st) or submetacentrics(am), while meiotic metaphase chromosomes were composed of five medium and four small-sized. 3. The haploid of the testis cells showed C-band in the centromeric region from 8 of them, whereas the remaining chromosome No. 5 included heterochromatin on the tip region, and chromosomes No. 3 and No. 7 showed a remarkable C-band distinguished from other chromosomes.

  • PDF