DOI QR코드

DOI QR Code

Effect of Zebularine Soaking on the Early Growth Stage and Mitotic Chromosomes of Barley (Hordeum vulgare L.)

제부라린의 침종처리가 보리 생육초기 생장 및 체세포 염색체에 미치는 영향

  • Han, Ji-Yoon (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology) ;
  • Kang, Seong-Wook (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology) ;
  • Chun, JaeBuhm (National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Yang-Kil (National Institute of Crop Science, Rural Development Administration) ;
  • Yoon, Young-Mi (National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Seong-Woo (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology)
  • 한지윤 (경남과학기술대학교 농학한약자원학부) ;
  • 강성욱 (경남과학기술대학교 농학한약자원학부) ;
  • 전재범 (농촌진흥청 국립식량과학원) ;
  • 김양길 (농촌진흥청 국립식량과학원) ;
  • 윤영미 (농촌진흥청 국립식량과학원) ;
  • 조성우 (경남과학기술대학교 농학한약자원학부)
  • Received : 2020.09.22
  • Accepted : 2020.10.28
  • Published : 2020.12.01

Abstract

The objective of this study was to identify the effect of zebularine soaking on the early growth stage of barley (Hordeum vulgare L.). Hence, root elongation was measured daily according to the different concentrations of zebularine (1.0, 2.5, 5.0, and 10.0 μM) for 4 days. On the first day, root length at 2.5 and 5.0 μM was significantly longer than that in the non-treated control. On the second day, root length was not significantly different among all concentrations and controls. On the third day, root elongation was suppressed by the effect of zebularine, except at 2.5 μM. The treatment time of zebularine accounted for the largest proportion of the variation in root elongation. After transplanting, plant growth velocity was similar to that of the control; however, plants at 2.5 μM showed faster growth velocity than that of the other concentrations and the control. In the metaphase of mitosis, most chromosomes of cells under zebularine treatment were ordinary regardless of the concentration, while some cells with short chromosomes were investigated at around 2%. The short chromosome showed a centromere. In addition, it showed short and long arms based on the centromere. The lengths of the short and long arms were different for each short chromosome. It is necessary to study the effect of the short chromosome as a chromosomal function on plant growth and phenotype through investigation of meiosis and fertilization at the chromosome level.

이 연구는 보리의 뿌리와 엽의 출현과 신장 및 체세포 분열에서 중기 염색체를 관찰함으로써 시티딘 유사체인 제부라린이 보리의 초기 생장에 미치는 영향에 대하여 조사하였다. 제부라린은 염색체 절단을 유발하기 때문에 식물의 뿌리 신장을 억제하는 것으로 알려져 있다. 이 연구에서는 이러한 식물체에 미치는 손상을 줄이기 위하여 기존의 뿌리 흡수 처리 방식이 아닌 침종 처리 방식을 수행한 결과, 제부라린 농도 2.5 μM에서 대조구와 뿌리의 신장에 차이가 없었으며, 동일 농도에서 엽의 신장력은 대조구보다 높았다. 체세포 분열에서 중기 염색체를 관찰한 결과, 대부분의 세포는 정상 형태의 염색체를 가지고 있는 것으로 확인되었다. 특이한 점은 약 2.0%에 상응하는 세포에서 정상형태의 염색체보다 크기가 매우 작은 비정상 염색체가 확인되었으며, 이 비정상 염색체의 형태는 동원체를 가지고 있으나 불규칙한 형태를 가지고 있는 것으로 확인되었다. 이 비정상 염색체의 염색체 능력과 유전력에 대해서는 좀 더 심도 있는 연구가 필요할 것으로 생각한다.

Keywords

References

  1. Balch, C., P. Yan, T. Craft, S. Young, D. G. Skalnik, T. H.-M. Huang, and K. P. Nephew. 2005. Antimitogenic and chemosensitizing effects of the methylation inhibitor zebularine in ovarian cancer. Mol. Cancer Ther. 4(10) : 1505-1514. https://doi.org/10.1158/1535-7163.MCT-05-0216
  2. Beier, S., A. Himmelbach, C. Colmsee, X.-Q. Zhang, R. A. Barrero, Q. Zhang, et al. 2017. Construction of a map-based reference genome sequence for barley, Hordeum vulgare L. Sci. Data 4, 170044 https://doi.org/10.1038/sdata.2017.44
  3. Cheng, J. C., D. J. Weisenberger, F. A. Gonzales, G. Liang, G.-L. Xu, Y.-G. Hu, V. E. Marquez, and P. A. Jones. 2004. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol. Cell. Biol. 24(3) : 1270-1278. https://doi.org/10.1128/MCB.24.3.1270-1278.2004
  4. Cho, S.-W., T. Ishii, N. Matsumoto, H. Tanaka, A.E. Eltayeb, and H. Tsujimoto. 2011. Effect of the cytidine analogue zebularine on wheat mitotic chromosomes. Chromosome Sci. 14 : 23-28.
  5. Christman, J. K. 2002. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 21 : 5483-5495. https://doi.org/10.1038/sj.onc.1205699
  6. De Las Hedras, J. I., I. P. King, and J. S. Parker. 2001. 5- azacytidine induces chromosomal breakage in the root tips of wheat carrying the cuckoo chromosome 4SL from AegiIops sharonensis. Heredity. 87 : 474-479. https://doi.org/10.1046/j.1365-2540.2001.00931.x
  7. Finnegan, E. J., B. Ford, X. Wallace, F. Pettolino, P. T. Griffin, R. J. Schmitz, P. Zhang, J. Barrero, M. J. Hayden, S. A. Boden, C. Cavanagh, S. M. Swain, and B. Trevaskis B. 2018. Zebularine treatment is associated with deletion of FT- B1 leading to an increase in spikelet number in bread wheat. Plant Cell Environ. 41 : 1346-1360. https://doi.org/10.1111/pce.13164
  8. Gill, B. S., B. Friebe, and T. R. Endo. 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome. 34 : 830-839 https://doi.org/10.1139/g91-128
  9. Ma, X., Q. Wang, Y. Wang, J. Ma, N. Wu, S. Ni, T. Luo, L. Zhuang, C. Chu, S.-W. Cho, H. Tsujimoto, and Z. Qi. 2016. Chromosome aberrations induced by zebularine in triticale. Genome. 59 : 485-492. https://doi.org/10.1139/gen-2016-0047
  10. Mascher, M., H. Gundlach, A. Himmelbach, S. Beier, S. O. Twardziok, T. Wicker, et al. 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature doi: 10.1038/22043
  11. Marquez, V. E., J. A. Kelley, R. Agbaria, T. Ben-Kasus, J. C. Cheng, C. B. Yoo, and P. A. Jones. 2005. Zebularine: A unique molecule for an epigenetically based strategy in cancer chemotherapy. N. Y. Acad. Sci. 1058 : 246-254. https://doi.org/10.1196/annals.1359.037
  12. Orta, M. L., J. M. Calderon-Montano, I. Dominguez, N. Pastor, E. Burgos-Moron, M. Lopez-Lazaro, F. Cortes, S. Mateos, and T. Helleday. 2013. 5-Aza-20-deoxycytidine causes replication lesions that require Fanconianemia-dependent homologous recombination for repair. Nucleic Acids Res.41 : 5827-5836. https://doi.org/10.1093/nar/gkt270
  13. Piskala, A. and F. Sorm. Nucleic acids components and their analogues. LI. Synthesis of 1-glycosyl derivatives of 5-azauracil and 5-azacytosine. 1964. Collect. Czech. Chem. Commun. 29(9) : 2060-2076. https://doi.org/10.1135/cccc19642060
  14. Rao, S. P., M. P. Rechsteiner, C. Berger, J. A. Sigrist, D. Nadal, and M. Bernasconi. 2007. Zebularine reactivates silenced E-cadherin but unlike 5-Azacytidine does not induce switching from latent to lytic Epstein-Barr virus infection in Burkitt's lymphoma Akata cells. Mol. Cancer. 6 : 3. https://doi.org/10.1186/1476-4598-6-3
  15. Szakacs, E., K. Kruppa, and M. Molnar-Lang. 2013. Analysis of chromosomal polymorphism in barley (Hordeum vulgare L. ssp. vulgare) and between H. vulgare and H. chilense using three-color fluorescence in situ hybridization (FISH). J. Appl. Genet. 54 (4) : 427-433. https://doi.org/10.1007/s13353-013-0167-8
  16. Yang, P.-M., Y.-T. Lin, C.-T. Shun, S.-H. Lin, T.-T. Wei, S.-H. Chuang, M.-S. Wu, and C.-C. Chen. 2013. Zebularine inhibits tumorigenesis and stemness of colorectal cancer via p53- dependent endoplasmic reticulum stress. Sci. Rep. 3 : 3219. https://doi.org/10.1038/srep03219