Browse > Article
http://dx.doi.org/10.7740/kjcs.2020.65.4.399

Effect of Zebularine Soaking on the Early Growth Stage and Mitotic Chromosomes of Barley (Hordeum vulgare L.)  

Han, Ji-Yoon (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology)
Kang, Seong-Wook (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology)
Chun, JaeBuhm (National Institute of Crop Science, Rural Development Administration)
Kim, Yang-Kil (National Institute of Crop Science, Rural Development Administration)
Yoon, Young-Mi (National Institute of Crop Science, Rural Development Administration)
Cho, Seong-Woo (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.65, no.4, 2020 , pp. 399-405 More about this Journal
Abstract
The objective of this study was to identify the effect of zebularine soaking on the early growth stage of barley (Hordeum vulgare L.). Hence, root elongation was measured daily according to the different concentrations of zebularine (1.0, 2.5, 5.0, and 10.0 μM) for 4 days. On the first day, root length at 2.5 and 5.0 μM was significantly longer than that in the non-treated control. On the second day, root length was not significantly different among all concentrations and controls. On the third day, root elongation was suppressed by the effect of zebularine, except at 2.5 μM. The treatment time of zebularine accounted for the largest proportion of the variation in root elongation. After transplanting, plant growth velocity was similar to that of the control; however, plants at 2.5 μM showed faster growth velocity than that of the other concentrations and the control. In the metaphase of mitosis, most chromosomes of cells under zebularine treatment were ordinary regardless of the concentration, while some cells with short chromosomes were investigated at around 2%. The short chromosome showed a centromere. In addition, it showed short and long arms based on the centromere. The lengths of the short and long arms were different for each short chromosome. It is necessary to study the effect of the short chromosome as a chromosomal function on plant growth and phenotype through investigation of meiosis and fertilization at the chromosome level.
Keywords
barley; cytidine analog; short chromosome; zebularine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mascher, M., H. Gundlach, A. Himmelbach, S. Beier, S. O. Twardziok, T. Wicker, et al. 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature doi: 10.1038/22043
2 Marquez, V. E., J. A. Kelley, R. Agbaria, T. Ben-Kasus, J. C. Cheng, C. B. Yoo, and P. A. Jones. 2005. Zebularine: A unique molecule for an epigenetically based strategy in cancer chemotherapy. N. Y. Acad. Sci. 1058 : 246-254.   DOI
3 Orta, M. L., J. M. Calderon-Montano, I. Dominguez, N. Pastor, E. Burgos-Moron, M. Lopez-Lazaro, F. Cortes, S. Mateos, and T. Helleday. 2013. 5-Aza-20-deoxycytidine causes replication lesions that require Fanconianemia-dependent homologous recombination for repair. Nucleic Acids Res.41 : 5827-5836.   DOI
4 Piskala, A. and F. Sorm. Nucleic acids components and their analogues. LI. Synthesis of 1-glycosyl derivatives of 5-azauracil and 5-azacytosine. 1964. Collect. Czech. Chem. Commun. 29(9) : 2060-2076.   DOI
5 Rao, S. P., M. P. Rechsteiner, C. Berger, J. A. Sigrist, D. Nadal, and M. Bernasconi. 2007. Zebularine reactivates silenced E-cadherin but unlike 5-Azacytidine does not induce switching from latent to lytic Epstein-Barr virus infection in Burkitt's lymphoma Akata cells. Mol. Cancer. 6 : 3.   DOI
6 Szakacs, E., K. Kruppa, and M. Molnar-Lang. 2013. Analysis of chromosomal polymorphism in barley (Hordeum vulgare L. ssp. vulgare) and between H. vulgare and H. chilense using three-color fluorescence in situ hybridization (FISH). J. Appl. Genet. 54 (4) : 427-433.   DOI
7 Yang, P.-M., Y.-T. Lin, C.-T. Shun, S.-H. Lin, T.-T. Wei, S.-H. Chuang, M.-S. Wu, and C.-C. Chen. 2013. Zebularine inhibits tumorigenesis and stemness of colorectal cancer via p53- dependent endoplasmic reticulum stress. Sci. Rep. 3 : 3219.   DOI
8 Cheng, J. C., D. J. Weisenberger, F. A. Gonzales, G. Liang, G.-L. Xu, Y.-G. Hu, V. E. Marquez, and P. A. Jones. 2004. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol. Cell. Biol. 24(3) : 1270-1278.   DOI
9 Balch, C., P. Yan, T. Craft, S. Young, D. G. Skalnik, T. H.-M. Huang, and K. P. Nephew. 2005. Antimitogenic and chemosensitizing effects of the methylation inhibitor zebularine in ovarian cancer. Mol. Cancer Ther. 4(10) : 1505-1514.   DOI
10 Beier, S., A. Himmelbach, C. Colmsee, X.-Q. Zhang, R. A. Barrero, Q. Zhang, et al. 2017. Construction of a map-based reference genome sequence for barley, Hordeum vulgare L. Sci. Data 4, 170044   DOI
11 Cho, S.-W., T. Ishii, N. Matsumoto, H. Tanaka, A.E. Eltayeb, and H. Tsujimoto. 2011. Effect of the cytidine analogue zebularine on wheat mitotic chromosomes. Chromosome Sci. 14 : 23-28.
12 Christman, J. K. 2002. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 21 : 5483-5495.   DOI
13 De Las Hedras, J. I., I. P. King, and J. S. Parker. 2001. 5- azacytidine induces chromosomal breakage in the root tips of wheat carrying the cuckoo chromosome 4SL from AegiIops sharonensis. Heredity. 87 : 474-479.   DOI
14 Finnegan, E. J., B. Ford, X. Wallace, F. Pettolino, P. T. Griffin, R. J. Schmitz, P. Zhang, J. Barrero, M. J. Hayden, S. A. Boden, C. Cavanagh, S. M. Swain, and B. Trevaskis B. 2018. Zebularine treatment is associated with deletion of FT- B1 leading to an increase in spikelet number in bread wheat. Plant Cell Environ. 41 : 1346-1360.   DOI
15 Gill, B. S., B. Friebe, and T. R. Endo. 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome. 34 : 830-839   DOI
16 Ma, X., Q. Wang, Y. Wang, J. Ma, N. Wu, S. Ni, T. Luo, L. Zhuang, C. Chu, S.-W. Cho, H. Tsujimoto, and Z. Qi. 2016. Chromosome aberrations induced by zebularine in triticale. Genome. 59 : 485-492.   DOI