• Title/Summary/Keyword: Metamorphic silicate

Search Result 11, Processing Time 0.023 seconds

High-pressure amphibolite of the Imjingang belt in the Yeoncheon-Cheongok area (연천-전곡 지역에 분포하는 임진강대의 고압 각섬암)

  • ;;;Eizo Nakamura
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.1-19
    • /
    • 1995
  • In order to characterize the petrogenesis of the E-W trending Imjinganag belt, we studied the metamorphic rocks of the Yeoncheon Group near its type locality, Yeoncheon - Cheongok area, belonging to the southern part of this fold-thrust belt. The Samgot Formation of the Yeoncheon Group consists of calc-silicate and metapsammitic rocks together with amphibolite and amphibole gneiss. Layers of these metamorphic rocks concordantly occur in a wide area with its length greater than 15 km along their strike direction. Major mineral assemblages of the amphibolite are hornblende + plagioclase ${\pm}$ garnet ${\pm}$ diopside ${\pm}$ biotite ${\pm}$ quartz. Accessory rutile and ilmenite are characteristically replaced by titanite. Metamorphic temperatures and pressures estimated from the garnet - hornblende - plagioclase - quartz geothermo-barometers are 632-$736^{\circ}C$ and 7.9-11.1 kbar, respectively. Thus, the regional metamorphism of the study area belongs to the upper amphibolite facies. Furthermore, Sm-Nd and Rb-Sr data of garnet, plagioclase, and whole rock of an amphibolite define mineral isochrons of $231{\pm}30$ Ma and $222{\pm}24$ Ma, respectively, suggesting the Triassic metamorphism. These results are consistent with P-T conditions and metamorphic ages reported in the Shandong Peninsula, and support the hypothesis that the Chinese collision belt may extend into the Imjingang belt in the Korean Peninsula.

  • PDF

A Study on the Ground Reinforcement and Impermeable Effect by McG (McG(맥) 주입공법에 의한 지반보강 및 차수효과에 관한 연구)

  • Jung, Jong-Ju;Do, Kyung-Yang;Shin, Tai-Wook;Park, Won-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.581-590
    • /
    • 2005
  • The grouting method is widely used as the impermeable effect and ground reinforcement in construction. But, it has a problem that cement and grout material are not mixed well in the injection tip equipment and an opposite flow and interception state of the chemical grouting is happened. so, continuous work is difficult. McG method installed a special grouting and device, made possible go well mixing of grouting material and prevent flowing backward and block of nozzle also diversify powder rate of cement that is grouting material to select sutible material in layer conditions. YSS that lowered $Na_2O$ influencing durability and circumstance is developed by gel-forming reaction material. so eco-circumstance and durability is increased by minimizing dissolution of underground water. In this study, it is assumed that seepage state of the injection material using a special injection tip equipment and a unconfined compressive strenth by mixing a various injection material of various. And it is confirmed that strenth increase effect and permeable decrease of the improved body through the test execution and field execution.

  • PDF

A Study on the Ground Reinforcement and Impermeable Effect by McG (McG(맥) 주입공법에 의한 지반보강 및 차수효과에 관한 연구)

  • Chun, Byung-Sik;Jung, Jong-Ju;Chung, Chang-Hee;Do, Kyung-Yang;Do, Jong-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.352-361
    • /
    • 2006
  • The grouting method is widely used in construction to reduce permeability and reinforce the ground. If the cement and grout material are not mixed well in the injection tip equipment, an opposite flow and Interception state of the chemical grouting can occur. McG method installs a special grouting device to allow better mixing of the grouting material and prevent backward flow. The block of nozzle also diversify powder rate of cement. YSS that lowers $Na_2O$ and thereby increases durability is developed by gel-forming reaction material. In this study, the seepage state and unconfined compressive strength of the injection material using the special injection tip equipment is tested. The results of laboratory and field tests clearly demonstrate that the strength increases and permeability decreases using the McG method.

  • PDF

Diopside DSD (crystal size distribution) in the Contact Metamorphic Aureole (Hwanggangni Formation) near the Daeyasan Granite Goesan, Korea (괴산지역 대야산 화강암체 주변 접촉변성대(황강리층)에서의 투휘석 결정 크기분포)

  • Kim, Sangmyung;Kim, Hyung-Shik
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.161-167
    • /
    • 1996
  • The CSD (crystal size distribution) of diopside crystals in the calc-silicate hornfels of the Hwanggangni Formation intruded by the Cretaceous Daeyasan granite shows the patterns of continuous nucleation and growth. There is correlation between the distance from the intrusion contact and the slopes from the linear part of log(population density) vs. size diagrams. In the log(population density) vs. size diagrams of the samples systematically collected from the intrusion contact, two different groups are recognized; the slopes for the samples near the intrusion contact (horizontal distance from the contact less than 50m) are gentler (1500$cm^{-1}$) than those for the samples away from the intrusion contact (2500$cm^{-1}$, distance from the contact greater than 100 m). These differences may reflect the differences in growth rates and crystallization time, or the differences in diopside-forming reactions. All of the log(population density) vs. size diagrams show depletion of smaller crystals. The observed depletion may be due to Ostwald ripening or the changes in nucleation rates as the reactant phases diminishes. Similar grouping is also possible for the observed degree of depletion of smaller crystals; the depletion decreases with increasing distance from the intrusion contact, suggesting temperature-dependent rates of Ostwald ripening.

  • PDF

Expansion Behavior of Aggregate of Korea due to Alkali-Silica Reaction by ASTM C 1260 Method (ASTM C 1260 실험에 의한 국내 골재의 알칼리-실리카 반응 팽창 특성)

  • Yun, Kyong-Ku;Hong, Seung-Ho;Han, Seung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.431-437
    • /
    • 2008
  • The concrete pavement at Seohae Expressway in Korea has suffered from serious distress, only after four to seven years of construction. The deterioration of ASR has seldom been reported per se in Korea, because the aggregate used for the cement concrete has been considered safe against alkali-silica reaction so far. The purpose of this study is to examine the expansion behavior of aggregates of Korea due to alkali-silica reaction by ASTM C 1260 standard method of the accelerated mortar bar test (AMBT), stereo microscopic analysis, scanning electronic microscope (SEM) analysis, and electron dispersive X-ray spectrometer (EDX) analysis. The results are presented as it follows. The accelerated mortar bar test (AMBT) showed that mica granite and felsite of igneous rocks, aroke, red sandstone and shale of sedimentary rocks, slate of metamorphic rock, and dendrite and quartz of mineral rock showed more expansion than 0.1% at 14 days. But, some sedimentary rocks and metamorphic rocks expanded more than 0.1% at 28 days even though they were less than 0.1% at 14 days. The mortar bars, which showed more than occurred 0.1% expansion, resulted in cracking on surface. SEM and EDX analysis confirmed that the white gel was a typical reaction product of ASR. The ASR gel in Korea mainly consisted of Silicate (Si) and Potassium (K) from the cement. The crack in the concrete pavement was caused by ASR. It seems that Korea is no longer safe zone against alkali-silica reaction.

Hydrogeochemical study of a watershed in Pocheon area: controls of water chemistry

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Soo-Ho;Jean, Jong-Wook;Lee, Jeong-Ho;Kweon, Hae-Woo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.121-121
    • /
    • 2004
  • The groundwater in the Pocheon area occurs from both a fractured bedrock aquifer in igneous and metamorphic rocks and an alluvial aquifer with a thickness of <50 m, and forms a major source of domestic and agricultural water supply. In this study, we performed a hydrogeochemical study in order to identify the control of geochemical processes on groundwater quality. For this study, groundwater level and physicochemical parameters (EC, Eh, pH, alkalinity) were monitored once a month from a total of 150 groundwater wells between June 2003 to August 2004. A total of 153 water samples (13 surface water, 66 alluvial groundwater, 74 bedrock groundwater) were also collected and analyzed in February 2004. Groundwater chemistry in the study area is very complex, depending on a number of major factors such as geology, degree of chemical weathering, and quality of recharge water. Hydrochemical reactions such as the leaching of surficial and near-solace soil salts, dissolution of calcite, cation exchange, and weathering of silicate minerals are proposed to explain the chemistry of natural groundwater. Alluvial groundwaters locally have very high TDS concentrations, which are characterized by their chloride(nitrate)-sulfate-bicabonate facies and low Na/Cl ratio. Their grondwater levels are highly fluctuated according to rainfall event. We suggest that high nitrate content and salinity in such alluvial groundwaters originates from the local recharge of sewage effluents and/or fertilizers. Likewise, high concentrations of nitrate were also locally observed in some bedrock groundwaters, suggesting their effect of anthropogenic contamination. This is possibly due to the bypass flow taking place through macropores. Tile degree of the weathering of silicate minerals seems to be a major control of the distribution of major cations (sodium, calcium, magnesium, potassium) in bedrock groundwaters, which show a general increase with increasing depth of wells. Thermodynamic interpretation of groundwater chemistry shows that the groundwater in the study area is in chemical equilibrium with kaolinite and Na-montmorillonite, which indicates that weathering of plagioclase to those minerals is a major control of hydrochemistry of bedrock groundwater. The interpretation of the molar ratios among major ions, as well as the mass balance calculation, also indicates the role of both dissolution/precipitation of calcite and Ca-Na cationic exchange as bedrock groundwaters evolves progressively.

  • PDF

Nano inclusions in sapphire samples from Sri Lanka

  • Jaijong, K.;Wathanakul, P.;Kim, Y.C.;Choi, H.M.;Bang, S.Y.;Choi, B.G.;Shim, K.B.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.84-89
    • /
    • 2009
  • The turbid/translucent, near colorless(milky) metamorphic sapphire samples from Sri Lanka have been characterized after the heat treatment in $N_2$ at $1650^{\circ}C$. As-received sapphire specimens became bluish-colored and exhibited more clarity after the heat treatment. It was found that the color change at inclusions zoning region is attributed by the dissolution. As received samples contain the micro/nano inclusions such as rutile($TiO_2$), ilmenite($FeTiO_3$), spinel($MgAl_{2}O_{4}$)/ulvospinel($Fe_{2}TiO_{4}$) and apatite($Ca_5(PO_4)_3$), which were dissolved by the heat treatment and form the blue color through $Fe^{2+}/Ti^{4+}$ charge transferring. The microstructures become different because as the dissolution of apatite($Ca_5(PO_4)_3(OH,F,Cl)$) in alumino silicates($Al_{2}SiO_{5}$) occurred, resulting in morphological change with the appearance of(Ca, Mg, Al) silicate on the surface. Both as-received and heat treated samples showed the rhombohedral crystal structure of $Al_{2}O_{3}$.

Fluid Inclusions Trapped in Xenoliths from the Lower Crust/upper Mantle Beneath Jeju Island (I): A Preliminary Study (제주도의 하부지각/상부맨틀 기원의 포획암에 포획된 유체포유물: 예비연구)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.34-45
    • /
    • 2004
  • This paper describes the textural relations of mantle xenoliths and fluid inclusions in mantle-derived rocks found in alkaline basalts from Jeju Island which contain abundant ultramafic, felsic, and cumulate xenoliths. Most of the ultramafic xenoliths are spinel-lherzolites, composed of olivine, orthopyroxene, clinopyroxene and spinel. The felsic xenoliths considered as partially molten buchites consist of quartz and plagioclase with black veinlets, which are the product of ultrahigh-temperature metamorphism of lower crustal materials. The cumulate xenoliths, clinopyroxene-rich or clinopyroxene megacrysts, are also present. Textural examination of these xenoliths reveals that the xenoliths are typically coarse grained with metamorphic characteristics, testifying to a complex history of evolution of the lower crust/upper mantle source region. The ultramafic xenoliths contain protogranular, porphyroclastic and equigranular textures with annealing features, indicating the presence of shear regime in upper mantle of the Island. The preferential associations of spinel and olivine with large orthopyroxenes suggest a previous high temperature equilibrium in the high-Al field and the original rock-type was a Al-rich orthopyroxene-bearing peridotite without garnet. Three types of fluid inclusions trapped in mantle-derived xenoliths include CO$_2$-rich fluid (Type I), multiphase silicate melt (glass ${\pm}$ devitrified crystals ${\pm}$ one or more daughter crystals + one or more vapor bubbles) (Type II), and sulfide (melt) inclusions (Type III). C$_2$-rich inclusions are the most abundant volatile species in mantle xenoliths, supporting the presence of a separate CO$_2$-rich phase. These CO$_2$-rich inclusions are spatially associated with silicate and sulfide melts, suggesting immiscibility between them. Most multiphase silicate melt inclusions contain considerable amount of silicic glass. reflecting the formation of silicic melts in the lower crust/upper mantle. Combining fluid and melt inclusion data with conventional petrological and geochemical information will help to constrain the fluid regime, fluid-melt-mineral interaction processes in the mantle of the Korean Peninsula and pressure-temperature history of the host xenoliths in future studies.

Geology and Distribution of Crushed Aggregate Resources in Korea (국내 골재석산의 분포와 유형 분석)

  • Hong Sei Sun;Lee Chang Bum;Park Deok Won;Yang Dong Yun;Kim Ju Yong;Lee Byeong Tae;Oh Keun Chang
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.555-568
    • /
    • 2004
  • The demand of aggregate resources in Korea has been increased with a rapid economic growth since the 1980s. About 25% of the total aggregate production is derived from riverine aggregates, 20% to 25% from marine sands, 40% to 45% from crushed aggregate and the rest 5% to 15% from old fluvial deposits. The abundance of crushed coarse aggregates varies in the uniform distribution of country, but in general it can be concentrated in the most densely populated areas, five main cities. Typical rock types of the Korean crushed stones are classified as plutonic rocks of 27%, metamorphic rocks of 32%, sedimentary rocks and volcanic rocks of 18%, respectively. The most abundant coarse aggregate used in the country is obtained from granite (25% of total) and subordinately gneiss (20%), sandstone (10%) and andesite (10%). Although rock types using as dimension stone are only fifteen, those as aggregate amount up to twenty nine rocks. These rocks consist of plutonic rocks such as granite, syenite, diorite, aplite, porphyry, felsite. dike and volcanic rocks such as rhyolite, andesite, trachyte, basalt, tuff, volcanic breccia and metamorphic rocks such as gneiss, schist, phyllite, slate, meld-sandstone, quartzite, hornfels, calc-silicate rock, amphibolite. And sandstone, shale, mudstone, conglomerate, limestone, breccia, chert are main aggregate sources in tile sedimentary rocks. The abundance of plutonic rocks is the highest in Chungcheongbuk-do, and decreases as the order of Jeollabuk-do, Gangwon-do and Gyeonggi-do. In Jeollanam-do, volcanic aggregates occupy above 50%, on the contrary sedimentary aggregates are above 50% in Gyeongsangnam-do.

A Computational Mineralogy Study of the Crystal Structure and Stability of Aluminum Silicate (Al2SiO5) Minerals (알루미늄 규산염(Al2SiO5) 광물의 결정구조와 안정성에 대한 계산광물학 연구)

  • Kim, Juhyeok;Son, Sangbo;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.13-22
    • /
    • 2018
  • Aluminum silicates ($Al_2SiO_5$) undergo phase transitions among kyanite, andalusite, and sillimanite depending on temperature and pressure conditions. The minerals are often used as an important indicator of the degree of metamorphism for certain metamorphic rocks. In this study, we have applied classical molecular dynamics (MD) simulations and density functional theory (DFT) to the aluminum silicates. We examined the crystal structures as a function of applied pressure and the corresponding stabilities based on calculated enthalpies at each pressure. In terms of the lattice parameters, both methods showed that the volume decreases as the pressure increases as observed in the experiment. In particular, DFT results differed from experimental results by much less than 1%. As to the relative stability, however, both methods showed different levels of accuracy. In the MD simulations, a transition pressure at which the relative stability between two minerals reverse could not be determined because the enthalpies were insensitive to the applied pressure. On the other hand, in DFT calculations, the relative stability relation among the three minerals was consistent with experiment, although the transition pressure was strongly dependent on the choice of the electronic exchange-correlation functional.