• 제목/요약/키워드: Metalloenzymes

검색결과 12건 처리시간 0.027초

Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death

  • Daeun Shim;Jiyeon Han
    • BMB Reports
    • /
    • 제56권11호
    • /
    • pp.575-583
    • /
    • 2023
  • Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis.

Examination of the Nickel Site Structure in Streptomyces seoulensis Superoxide Dismutase by EPR and X-ray Absorption Spectroscopy

  • Lee, Jin-Won;Yim, Yang-In;Michael J. Maroney;Kang, Sa-Ouk
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1998년도 학술발표회
    • /
    • pp.26-26
    • /
    • 1998
  • Superoxide dismutases are metalloenzymes catalyzing the dimutation of superoxide anion radical to hydrogen peroxide and molecular oxygen. Examples of enzymes containing Cu, Mn and Fe as the redox-active metal have been characterized. Recently, an SOD containing one Ni atom per subunit was reported.(omitted)

  • PDF

Electrostatic and Hydrophobic on Recognition and Deacylation of an Anionic Ester by Ni(II)-Macrocyclic Complexes Built on Poly(ethylenimine)

  • Suh, Jung-Hun;Kim, No-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권2호
    • /
    • pp.292-294
    • /
    • 1993
  • Three derivatives of poly(ethylenimine) (PEI) are prepared by Ni(II)-template condensation with glyoxal(GO): PEI[Ni(II)-GO]$_{0.08}$ (1), PEI[Ni(II)-GO]$_{0.03}$ (2), and lau$_{0.18}$PEI[Ni(II)-GO]$_{0.03}$ (3). The contents of Ni(II)-macrocyclic center of 1-3 are 8%, 3%, or 3%, respectively, of the monomer residues, and 18% of monomer residues for 3 are laurylated. The pH profiles for k$_{cal}$ and k$_m$ for the deacylation of 4-carboxy-2-nitrophenyl acetate are measured. The relative magnitude of the parameters for 1-3 and different shapes of the pH profiles for 1-3 are explained in terms of the electrostatic and the hydrophobic effects exerted by the metal centers and lauryl groups. For the artificial metalloenzymes built on PEI, therefore, the ionization of functional groups and the affinity toward counter-anions can be controlled by adjusting charge density and the content of hydrophobic groups.

d10 Metal Complexes of a Tripodal Amine Ligand

  • Choi, Kyu-Seong;Kang, Dong-hyun;Lee, Ji-Eun;Seo, Joo-beom;Lee, Shim-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권5호
    • /
    • pp.747-750
    • /
    • 2006
  • Research on tripodal complexes has grown in recent decades and has been subject of numerous reports.1-11 The reasons for this interest include their relevance to model functions of metalloenzymes1-3 and their potential applications in catalysis.13-17 The ligand system used most in this category has been tren, the tripodal tetraamine N(CH2CH2NH2)3, and its derivatives.4 The bz3tren is a versatile tetradentate ligand, known to form stable complexes not only with transition metals5-11 including Cu2+, Zn2+ and Co2+ but also anion species.12 However, only few results on the d10 metal complexes with bz3tren have been reported by us10 and others.6,7 As a part of on going efforts, we therefore focus our attention to extend other d10 system that includes heavy metal ions.

Serratia marcescens Protease의 효소학적 특성 (Enzymatic Properties of Serratia marcescens Pretense)

  • 최병범
    • 한국식품영양학회지
    • /
    • 제16권2호
    • /
    • pp.152-157
    • /
    • 2003
  • Serratia marcescen ATCC 25419 protease를 ammonium sulfate treatment, DEAE-cellulose anion exchange chromatography등의 방법으로 정제하였는데 최종 단계에서 667.5 unit/mg 이었으며 회수율은 43%이었고 448배 정제되었다. 정제한 S. marcescens protease로부터 아포효소를 만든 후 금속 재활성화에 대해 조사하였다. S. marcescens protease는 EDTA에 의해 완전히 활성을 잃는 metalloenzyme이며 Hg, Fe, Cu 등에 의해서 효소 활성을 70% 이상 잃은 반면, Co는 효소 활성을 약 20% 정도 증가시켰다. 아포효소의 재활성화는 pH 6~8에서 Mn, Co, Zn 등이 효과적이었다. Mn, Co, Zn등을 아포효소에 가하여 만든 효소들 중에서 Zn-효소는 효소 활성도, 알칼리-불활성화, 열-안정성 면에서 원래 protease와 유사하였다.

Crystal Structure of β-Carbonic Anhydrase CafA from the Fungal Pathogen Aspergillus fumigatus

  • Kim, Subin;Yeon, Jungyoon;Sung, Jongmin;Jin, Mi Sun
    • Molecules and Cells
    • /
    • 제43권9호
    • /
    • pp.831-840
    • /
    • 2020
  • The β-class of carbonic anhydrases (β-CAs) are zinc metalloenzymes widely distributed in the fungal kingdom that play essential roles in growth, survival, differentiation, and virulence by catalyzing the reversible interconversion of carbon dioxide (CO2) and bicarbonate (HCO3-). Herein, we report the biochemical and crystallographic characterization of the β-CA CafA from the fungal pathogen Aspergillus fumigatus, the main causative agent of invasive aspergillosis. CafA exhibited apparent in vitro CO2 hydration activity in neutral to weak alkaline conditions, but little activity at acidic pH. The high-resolution crystal structure of CafA revealed a tetramer comprising a dimer of dimers, in which the catalytic zinc ion is tetrahedrally coordinated by three conserved residues (C119, H175, C178) and an acetate anion presumably acquired from the crystallization solution, indicating a freely accessible "open" conformation. Furthermore, knowledge of the structure of CafA in complex with the potent inhibitor acetazolamide, together with its functional intolerance of nitrate (NO3-) ions, could be exploited to develop new antifungal agents for the treatment of invasive aspergillosis.

Expression of a Cu-Zn Superoxide Dismutase Gene in Response to Stresses and Phytohormones in Rehmannia Glutinosa

  • Park, Myoung-Ryoul;Ryu, Sang-Soo;Yoo, Nam-Hee;Yu, Chang-Yeon;Yun, Song-Joong
    • 한국약용작물학회지
    • /
    • 제13권5호
    • /
    • pp.270-275
    • /
    • 2005
  • Superoxide dismutases (SOD) are metalloenzymes that convert $O_2^-\;to\;H_2O_2$. Rehmannia glutinosa is highly tolerant to paraquat-induced oxidative stress. The primary objective of this study was to characterize regulation of SOD gene expression in R. glutinosa in response to oxidative stresses and hormones. A full-length putative SOD clone (RgCu-ZnSOD1) was isolated from the leaf cDNA library of R. glutinosa using an expressed sequence tag clone as a probe. RgCu-ZnSOD1 cDNA is 777 bp in length and contains an open reading frame for a polypeptide consisted of 152 amino acid residues. The deduced amino acid sequence of the clone shows highest sequence similarity to the cytosolic Cu-ZnSODs. The two to three major bands with several minor ones on the Southern blots indicate that RgCu-ZnSOD1 is a member of a small multi-gene family. RgCuZnSOD1 mRNA was constitutively expressed in the leaf, flower and root. The expression of RgCu-ZnSOD1 mRNA was increased about 20% by wounding and paraquat, but decreased over 50% by ethylene and $GA_3$. This result indicates that the RgCu-ZnSOD1 expression is regulated differentially by different stresses and phytohormones at the transcription level. The RgCu-ZnSOD1 sequence and information on its regulation will be useful in investigating the role of SOD in the paraquat tolerance of R. glutinosa.

사람의 섬유아세포에서 Glucose 농도가 Insulin-like Growth Factor Binding Protein-5의 발현에 미치는 영향 (Effects of Glucose on Insulin-like Growth Factor Binding-5 Expression in Human Fibroblasts.)

  • 류혜영;황혜정;김인혜;류홍수;남택정
    • 생명과학회지
    • /
    • 제17권9호통권89호
    • /
    • pp.1224-1231
    • /
    • 2007
  • 사람의 섬유아세포인 GM10에서 glucose 농도에 따른 IGFBP-5의 존재와 발현에 미치는 영향을 살펴보고 당뇨병과 관련된 in vitro model system으로서의 활용 가능성을 검토하고자 하였다. 섬유아세포인 GM10 세포를 시용하여 glu-cose 배양 조건에 따른 IGFBP-5의 존재와 발현에 미치는 영향을 살펴보았다. 그 결과, IGFBP-5의 단백질 수준은 고농도 glucose 배양 조건에서 증가하였으나, IGFBP-5 mRNA 발현에는 아무런 영향을 나타내지 않았다. IGFBP-5 protease 활성은 고농도 glucose 배양 조건에서 높았다. IGF- I 과 인슐 린은 IGFBP-5 protease 활성에 관여하는 것으로 보여지며, GM10 세포에 있어서 IGFBP-5의 분해에는 serine protease 뿐만 아니라 metalloprotease가 관여하는 것으로 나타났다. 또한, gelatin zymography를 통한 protease 활성은 고농도 glucose 배양 조건에서 크게 나타났으며, 시간 의존적으로 증가하였다. 본 연구 결과를 바탕으로 IGFs와 같은 세포 성장인자에 대한 연구는 세포수준의 당뇨병과 관련된 in vitro model system이 가능하리라고 여겨지며 더 많은 연구가 진행되어야 할 것으로 보인다.