DOI QR코드

DOI QR Code

d10 Metal Complexes of a Tripodal Amine Ligand

  • Choi, Kyu-Seong (Department of Chemistry, Kyungnam University,) ;
  • Kang, Dong-hyun (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Lee, Ji-Eun (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Seo, Joo-beom (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Lee, Shim-Sung (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University)
  • Published : 2006.05.20

Abstract

Research on tripodal complexes has grown in recent decades and has been subject of numerous reports.1-11 The reasons for this interest include their relevance to model functions of metalloenzymes1-3 and their potential applications in catalysis.13-17 The ligand system used most in this category has been tren, the tripodal tetraamine N(CH2CH2NH2)3, and its derivatives.4 The bz3tren is a versatile tetradentate ligand, known to form stable complexes not only with transition metals5-11 including Cu2+, Zn2+ and Co2+ but also anion species.12 However, only few results on the d10 metal complexes with bz3tren have been reported by us10 and others.6,7 As a part of on going efforts, we therefore focus our attention to extend other d10 system that includes heavy metal ions.

Keywords

References

  1. Allen, C. S.; Chuang, C.-L.; Cornebise, M.; Canary, J. W. Inorg. Chim. Acta 1995, 239, 29 https://doi.org/10.1016/0020-1693(95)04710-7
  2. Chiou, Y.-M.; Que, L., Jr. J. Am. Chem. Soc. 1992, 114, 7567 https://doi.org/10.1021/ja00045a041
  3. Sanyal, I.; Ghosh, P.; Karlin, K. D. Inorg. Chem. 1995, 34, 3050 https://doi.org/10.1021/ic00115a035
  4. Zipp, S. G.; Zipp, A. P.; Madan, S. K. Coord. Chem. Rev. 1974, 14, 29 https://doi.org/10.1016/S0010-8545(00)82032-9
  5. Ibrahim, M. M.; Shimomura, N.; Ichikawa, K.; Shiro, M. Inorg.Chim. Acta 2001, 313, 125 https://doi.org/10.1016/S0020-1693(00)00381-9
  6. Komiyama, K.; Furutachi, H.; Nagatomo, S.; Hashimoto, A.;Hayashi, H.; Fujinami, S.; Suzuki, M.; Kitagawa, T. Bull. Chem.Soc. Jpn. 2004, 77, 59 https://doi.org/10.1246/bcsj.77.59
  7. Schatz, M.; Becker, M.; Walter, O.; Liehr, G.; Schindler, S. Inorg.Chim. Acta 2001, 324, 173 https://doi.org/10.1016/S0020-1693(01)00588-6
  8. Xie, Y.-S.; Jiang, H.; Liu, X.-T.; Zhou, Z.-Y.; Liu, Q.-L.; Xu, X.-L.Collect. Czech. Chem. Commun. 2002, 67, 1647 https://doi.org/10.1135/cccc20021647
  9. Jiang, J.; Xie, Y.-S.; Zhou, Z.-Y.; Xu, X.-L.; Liu, Q.-L. J. Coord.Chem. 2003, 56, 825 https://doi.org/10.1080/0095897031000123804
  10. Yoon, I.; Shin, Y. W.; Kim, J.; Park, K.-M.; Park, S. B.; Lee, S. S.Acta Crystallogr., Sect. C 2002, 58, m165 https://doi.org/10.1107/S0108270102000665
  11. Baumeister, J. M.; Alberto, R.; Ortner, K.; Spingler, B.;Schubiger, P. A.; Kaden, T. A. J. Chem. Soc., Dalton Trans. 2002, 4143
  12. Hossain, M. A.; Liljegren, J. A.; Powell, D.; Bowman-James, K. Inorg. Chem. 2004, 43, 3751 https://doi.org/10.1021/ic049762b
  13. Naiini, A. A.; Menge, W. M. P. B.; Verkade, J. G. Inorg. Chem.1991, 30, 5009 https://doi.org/10.1021/ic00026a028
  14. García-Seijo, M. I.; Sevillano, P.; Gould, R. O.; Fernández-Anca,D.; García-Fernández, M. E. Inorg. Chim. Acta 2003, 353,206 https://doi.org/10.1016/S0020-1693(03)00253-6
  15. Fagnou, K.; Lautens, M. Angew. Chem. Int. Ed. 2002, 41,26 https://doi.org/10.1002/1521-3773(20020104)41:1<26::AID-ANIE26>3.0.CO;2-9
  16. Perttu, E. K.; Arnold, M.; Iovine, P. M. Tetrahedron Lett. 2005,46, 8753 https://doi.org/10.1016/j.tetlet.2005.10.033
  17. Ishihara, K.; Yamamoto, H. Eur. J. Org. Chem. 1999, 527
  18. Marcus, S. T.; Gahan, L. R.; Bernhardt, P. V. Acta Crystallogr., Sect. C 2000, 56, 655 https://doi.org/10.1107/S0108270100003942
  19. Marcus, S. T.; Bernhardt, P. V.; Grondahl, L.; Gahan, L. R. Polyhedron 1999, 18, 3451 https://doi.org/10.1016/S0277-5387(99)00254-5
  20. Afshar, S.; Marcus, S. T.; Gahan, L. R.; Hambley, T. W. Aust. J. Chem. 1999, 52, 1 https://doi.org/10.1071/C98096
  21. Byriel, K. A.; Gahan, L. R.; Kennard, C. H. L.; Sunderland, C. J.J. Chem. Soc., Dalton Trans. 1993, 625

Cited by

  1. Endo- and Exocyclic Supramolecular Complexes of Mixed-Donor Macrocycles via [1:1] and [2:2] Cyclizations vol.52, pp.15, 2013, https://doi.org/10.1021/ic400247q
  2. -Donor Macrocycle and Its Disilver(I) Bis(Macrocycle) and Monocadmium(II) Complexes vol.36, pp.11, 2015, https://doi.org/10.1002/bkcs.10533
  3. ) complexes of Schiff base ligands derived from some unsymmetrical tripodal amines vol.39, pp.9, 2015, https://doi.org/10.1039/C5NJ01318F
  4. Tripodal polyamines: Adjustable receptors for cation extraction pp.1520-5754, 2017, https://doi.org/10.1080/01496395.2017.1302953
  5. Syntheses and Structural Studies of 1:1 (M:L) Silver(I) and 1:2 Nickel(II) Complexes with Tripodal Amide Ligand vol.28, pp.12, 2006, https://doi.org/10.5012/bkcs.2007.28.12.2546
  6. Four-, six- and eight-coordinated lead(II) complexes with amine- or amide-type tripodal ligands vol.10, pp.9, 2006, https://doi.org/10.1016/j.inoche.2007.06.012
  7. A Triple-Probe Channel NO2S2-Macrocycle: Synthesis, Sensing Characteristics and Crystal Structure of Mercury(II) Nitrate Complex vol.31, pp.7, 2006, https://doi.org/10.5012/bkcs.2010.31.7.2031
  8. Directed Self-Assembly of C4-Symmetric, Oxidovanadate-Centered, Vanadyl(V) Quadruplexes for Ba2+- and Hg2+-Specific Recognition, Transport, and Recovery vol.57, pp.18, 2006, https://doi.org/10.1021/acs.inorgchem.8b01454