• Title/Summary/Keyword: Metallic sodium

Search Result 71, Processing Time 0.02 seconds

Half-metallicity at the Surfaces of Rocksalt and Zinc-blende Sodium Nitride (암염 및 Zinc-blende 구조를 가지는 NaN 표면의 반쪽금속성에 대한 제일원리 연구)

  • Kim, Dong-Chul;Bialek, Beata;Lee, Jae-Il
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.4
    • /
    • pp.117-120
    • /
    • 2012
  • Compounds such as NaN belong to an interesting class of materials in which a magnetic order may appear despite the lack of d electrons. The magnetic properties of these materials are ascribed to the partially filled p shells. Recently, on the basis of electronic structure calculations from first principles, it has been found that NaN is a ferromagnetic half-metal in rocksalt (RS) and zinc-blende (ZB) structures with half-metallic band gaps in majority electron channels. The former structure has appeared to be more stable. From the first-principles calculation, we found that the half-metallic properties of the bulk RS and ZB NaN are conserved at the RS(001) and ZB(110) surfaces. Due to the interactions between Na s and N p electrons, N atoms become positively polarized. In the RS NaN (001) the calculated values of the magnetic moments of the N atoms is about $0.73{\mu}_B$. The magnetic moment on the N atom in the top most layer of ZB(110) is slightly larger than that of the RS(001) surface, i.e., $0.75{\mu}_B$. The Na atoms in the both structure are hardly polarized.

Recovery of Precious Metals from Spent Catalyst Generated in Domestic Petrochemical Industry (한내 석유화학 폐촉매로부터 귀금속의 회수 연구)

  • 김준수;박형규;이후인;김성돈;김철주
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • Recovery of precious metal values from petrochemical spent catalyst is important from the viewpoint of environmental protection and resource recycling. Two types of spent catalysts were used in this study. One used in the manufacture of ethylene contains 0.3% Pd in the alumina substrate. The other used in oil refining contains 0.3% Pt and 0.3% Re. Both spent catalysts are roasted to remove volatile matters as carbon and sulfur. Then, metallic Pd powder from Pd spent catalyst is obtained in the course of grinding, hydrochloric acid or aqua regia leaching and cementation with iron. For the recovery of Pt and Re from Pt-Re spent catalyst, Pt and Re are leached with either HCI or aqua regia, first. Metallic Pt powder is recovered from the leach solution by cementation with Fe powder. Re in sulfide form is precipitated by the addition of sodium sulfide to the solution obtained after Pt recovery. It is found that 6N HCI can be successfully used as leaching agent for both types of spent catalyst. 6N HCI is considered to be better than aqua regia in consideration of reagent and equipment cost.

  • PDF

Effect of Vapor Deposition on the Interdiffusion Behavior between the Metallic Fuel and Clad Material (금속연료-피복재 상호확산 거동에 미치는 기상증착법의 영향)

  • Kim, Jun Hwan;Lee, Byoung Oon;Lee, Chan Bock;Jee, Seung Hyun;Yoon, Young Soo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.549-556
    • /
    • 2011
  • This study aimed to evaluate the performance of diffusion barriers in order to prevent fuel-cladding chemical interaction (FCCI) between the metallic fuels and the cladding materials, a potential hazard for nuclear fuel in sodium-cooled fast reactors. In order to prevent FCCI, Zr or V metal is deposited on the ferritic-martensitic stainless steel surface by physical vapor deposition with a thickness up to $5{\mu}m$. The diffusion couple tests using uranium alloy (U-10Zr) and a rare earth metal such as Ce-La alloy and Nd were performed at temperatures between 660~800$^{\circ}C$. Microstructural analysis using SEM was carried out over the coupled specimen. The results show that significant interdiffusion and an associated eutectic reaction ocurred in the specimen without a diffusion barrier. However, with the exception of the local dissolution of the Zr layer in the Ce-La alloy, the specimens deposited with Zr and V exhibited superior eutectic resistance to the uranium alloy and rare earth metal.

Study of the Photodegradation Properties of Toluene using Photocatalysts Modified by Metal Matter (금속물질로 개질된 광촉매를 이용한 톨루엔 광분해특성 연구)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6952-6957
    • /
    • 2014
  • In photocatalysis, the addition of metal matter to $TiO_2$ can alter the surface properties. As such, the metal can increase the rate of the photodegradation reaction. In this study, a range of modified $TiO_2$ photocatalysts were prepared and tested to improve the activity of photodegradation at a batch-typed photoreactor. To obtain a good sol solution of the $TiO_2$ photocatalyst, several types of dispersion agents and stabilizers were investigated. The photocatalyst solutions were modified with isoproply alcohol as the dispersion agent and sodium silicate as the stabilizer. The effects of various metallic elements on enhancing the photocatalytic activity of $TiO_2$ on the degradation of toluene were examined. Palladium-added $TiO_2$ was found to be the best, whereas copper or tungsten-added also showed good results. In the case of palladium addition, the increase in removal efficiency was 25%. On the other hand, Fe-added $TiO_2$ showed a notable decrease in photocatalytic degradation. Additional doping of copper or tungsten on the $Pd/TiO_2$ had no positive effect on the photodegradation activity.

Numerical simulation of localization of a sub-assembly with failed fuel pins in the prototype fast breeder reactor

  • Abhitab Bachchan;Puspendu Hazra;Nimala Sundaram;Subhadip Kirtan;Nakul Chaudhary;A. Riyas;K. Devan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3648-3658
    • /
    • 2023
  • The early localization of a fuel subassembly with a failed (wet rupture) fuel pin is very important in reactors to limit the associated radiological and operational consequences. This requires a fast and reliable system for failure detection and their localization in the core. In the Prototype Fast Breeder Reactor, the system specially designed for this purpose is Failed Fuel Location Modules (FFLM) housed in the control plug region. It identifies a failed sub-assembly by detecting the presence of delayed neutrons in the sodium from a failed sub-assembly. During the commissioning phase of PFBR, it is mandatory to demonstrate the FFLM effectiveness. The paper highlights the engineering and physics design aspects of FFLM and the integrated simulation towards its function demonstration with a source assembly containing a perforated metallic fuel pin. This test pin mimics a MOX pin of 1 cm2 of geometrical defect area. At 10% power and 20% sodium flow rate, the counts rate in the BCCs of FFLM system range from 75 cps to 145 cps depending upon the position of DN source assembly. The model developed for the counts simulation is applicable to both metal and MOX pins with proper values of k-factor and escape coefficient.

Some Mineralogical and Physico-Chemical Properties of Fuller's Earths from Tertiary Sediments in South Korea (삼기층중(三紀層中)에서 산출(産出)되는 산성백토(酸性白土)에 관(關)한 광물학적(鑛物學的) 조성(組成) 및 물리화학적(物理化學的) 성질(性質)에 관(關)하여)

  • Moon, Hee Soo;Morgan, D.J.
    • Economic and Environmental Geology
    • /
    • v.16 no.3
    • /
    • pp.149-161
    • /
    • 1983
  • Fuller's earth deposits from Miocene sedimentary sequences in Gyeong Sang-do contain up to 95% Ca-montmorillonite accompanied by cristobalite, clinoptilolite, mordenite, quartz, feldspar and X-ray amorphous material. Differential thermal analysis, infrared and electron microscopic data are given for the montmorillonite component. The ease with which the exchangeable calcium of the montmorillonite could be replaced by sodium (to give a product with properties similar to that of a bentonite) was monitored by the Atterberg liquid limit test. Some samples tested as possible binders for foundry moulding sands gave results that compared favourably with material currently being used for this application. Many of the samples also met the OCMA specifications for clays used in drilling muds.

  • PDF

Biofouling and Microbial Induced Corrosion -A Case Study

  • Mohammed, R.A.;Helal, A.M.;Sabah, N.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • In industrial and fluid handling systems, frequently the protective film forming materials suffer from severe corrosion due to microbial effects. As an example, various micro-organisms, including bacteria, exist in seawater normally fed to power and desalination plants. Unless seawater intakes are properly disinfected to control these microbial organisms, biological fouling and microbial induced corrosion (MIC) will be developed. This problem could destroy metallic alloys used for plant construction. Seawater intakes of cogeneration plants are usually disinfected by chlorine gas or sodium hypochlorite solution. The dose of disinfectant is designed according to the level of contamination of the open seawater in the vicinity of the plant intake. Higher temperature levels, lower pH, reduced flow velocity and oxidation potential play an important role in the enhancement of microbial induced corrosion and bio-fouling. This paper describes, in brief, the different types of bacteria, mechanisms of microbiological induced corrosion, susceptibility of different metal alloys to MIC and possible solutions for mitigating this problem in industry. A case study is presented for the power plant steam condenser at Al-Taweelah B-station in Abu Dhabi. The study demonstrates resistance of Titanium tubes to MIC.

Test Run for the Production of Aluminum Hydroxide by Recycling of Waste Aluminum Dross (알루미늄 폐드로스로부터 수산화알루미늄 생산 시운전 결과)

  • Lee Hooin;Park Ryungkyu;Kim Joonsoo
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.47-53
    • /
    • 2004
  • Waste aluminum dross is a major waste in the aluminum scrap smelters, and some metallic aluminum remains in the waste dross. In the previous study, waste aluminum dross was leached with sodium hydroxide solution to extract the remained aluminum into the solution, and aluminum hydroxide precipitate was recovered from the leached solution. A pilot plant was constructed and tested to demonstrate the developed technology. One thousand tons of waste aluminum dross could be processed, and about five hundred tons of aluminum hydroxide could be produced in the pilot plant. From the test run of the pilot plant, it was confirmed that the developed technology could be employed as a commercial scale and the produced aluminum hydroxide could be used for water treatment agent.

Correlation between rare earth elements in the chemical interactions of HT9 cladding

  • Lee, Eun Byul;Lee, Byoung Oon;Shim, Woo-Yong;Kim, Jun Hwan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.915-922
    • /
    • 2018
  • Metallic fuel has been considered for sodium-cooled fast reactors because it can maximize the uranium resources. It generates rare earth elements as fission products, where it is reported by aggravating the fuel-cladding chemical interaction at the operating temperature. Rare earth elements form a multicomponent alloy (Ce-Nd-Pr-La-Sm-etc.) during reactor operation, where it shows a higher reaction thickness than a single element. Experiments have been carried out by simplifying multicomponent alloys for mono or binary systems because complex alloys have difficulty in the analysis. In previous experiments, xCe-yNd was fabricated with two elements, Ce and Nd, which have a major effect on the fuel-cladding chemical interaction, and the thickness of the reaction layer reached maximum when the rare earth elements ratio was 1:1. The objective of this study is to evaluate the effect and relationship of rare earth elements on such synergistic behavior. Single and binary rare earth model alloys were prepared by selecting five rare earth elements (Ce, Nd, Pr, La, and Sm). In the single system, Nd and Pr behaviors were close to diffusion, and Ce showed a eutectic reaction. In the binary system, Ce and Sm further increased the reaction layer, and La showed a non-synergy effect.

FAST irradiations and initial post irradiation examinations - Part I

  • G. Beausoleil;L. Capriotti;B. Curnutt;R. Fielding;S. Hayes;D. Wachs
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4084-4094
    • /
    • 2022
  • The Advanced Fuels Campaign Fission Accelerated Steady-state Test (FAST) at Idaho National Laboratory (INL) completed its first irradiation cycle within the Advanced Test Reactor (ATR). The test focused on the irradiation of alloy fuel forms for use in sodium fast reactors. The first cycle of FAST testing was completed and four rodlets were removed for the initial post irradiation examination (PIE). The rodlet design and irradiation conditions were evaluated using Monte Carlo N-Particle (MCNP) for as-run power history and COMSOL for temperature analysis. These rodlets include a set of low burnups (~2.5 % fissions per initial metal atoms [%FIMA]), control rodlets, and a helium-bonded annular rodlet (4.7 %FIMA). Nondestructive PIE has been completed and includes visual inspection, neutron radiography and gamma scanning of the FAST capsules and rodlets. Radiography confirmed the integrity of the experiments, revealed that the annulus in the annular fuel was filled at a modest burnup (4.7 %FIMA), and indicated potential slumping of the cooler rodlets at lower burnup. Precision gamma scanning indicated mostly usual fission product behavior, except for cesium in the He-bonded annular fuel. Future destructive PIE will be necessary to fully interpret the effects of accelerated irradiation on U-Zr metallic fuel behavior.