Browse > Article
http://dx.doi.org/10.1016/j.net.2018.04.015

Correlation between rare earth elements in the chemical interactions of HT9 cladding  

Lee, Eun Byul (SFR Nuclear Fuel Development Division, Korea Atomic Energy Research Institute)
Lee, Byoung Oon (SFR Nuclear Fuel Development Division, Korea Atomic Energy Research Institute)
Shim, Woo-Yong (Materials Science & Engineering, Yonsei University)
Kim, Jun Hwan (SFR Nuclear Fuel Development Division, Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.50, no.6, 2018 , pp. 915-922 More about this Journal
Abstract
Metallic fuel has been considered for sodium-cooled fast reactors because it can maximize the uranium resources. It generates rare earth elements as fission products, where it is reported by aggravating the fuel-cladding chemical interaction at the operating temperature. Rare earth elements form a multicomponent alloy (Ce-Nd-Pr-La-Sm-etc.) during reactor operation, where it shows a higher reaction thickness than a single element. Experiments have been carried out by simplifying multicomponent alloys for mono or binary systems because complex alloys have difficulty in the analysis. In previous experiments, xCe-yNd was fabricated with two elements, Ce and Nd, which have a major effect on the fuel-cladding chemical interaction, and the thickness of the reaction layer reached maximum when the rare earth elements ratio was 1:1. The objective of this study is to evaluate the effect and relationship of rare earth elements on such synergistic behavior. Single and binary rare earth model alloys were prepared by selecting five rare earth elements (Ce, Nd, Pr, La, and Sm). In the single system, Nd and Pr behaviors were close to diffusion, and Ce showed a eutectic reaction. In the binary system, Ce and Sm further increased the reaction layer, and La showed a non-synergy effect.
Keywords
Annealing; Diffusion; Fuel-Cladding Chemical Interaction; Metals; Scanning Electron Microscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.H. Kim, J.H. Baek, B.O. Lee, C.B. Lee, Y.S. Yoon, Kor. J. Met. Mater. 48 (2010) 691-694.
2 J.G. Kim, S.J. Lee, S.B. Park, S.C. Hwang, H.S. Lee, Procedia Chem. 7 (2012) 754-757.   DOI
3 H.M. Heo, S.G. Park, J.H. Kim, S.H. Kim, M.Y. Heo, Kor. J. Met. Mater. 53 (2015) 177-178.   DOI
4 E.H. Jeong, S.G. Park, S.H. Kim, Y.D. Kim, J. Nucl. Mater. 467 (2015) 527.   DOI
5 R.D. Mariani, D.L. Porter, T.P. O'Holleran, S.L. Hayes, J.R. Kennedy, J. Nucl. Mater. 419 (2011) 263-267.   DOI
6 P.C. Tortorici, M.A. Dayananda, J. Nucl. Mater. 204 (1993) 165.   DOI
7 J.H. Kim, J.S. Cheon, B.O. Lee, J.H. Kim, J. Nucl. Mater. 479 (2016) 394-400.   DOI
8 J.H. Kim, J.H. Baek, B.O. Lee, C.B. Lee, Y.S. Yoon, Met. Mater. Int. 17 (4) (2011) 535-540.   DOI
9 K. Inagaki, T. Ogata, J. Nucl. Mater. 441 (2013) 574-578.   DOI
10 D.D. Keiser, Scripta Metall. Mater. 133 (1995) 959.
11 K. Nakamura, T. Ogata, M. Kurata, A. Itoh, M. Akabori, J. Nucl. Mater. 275 (1999) 246.   DOI
12 T. Ogata, M. Akabori, A. Itoh, T. Ogawa, J. Nucl. Mater. 232 (1996) 125-130.   DOI
13 C. Metthews, C. Unal, J. Galloway, D.D. Keiser, S.L. Hayes, Nucl. Technol. 198 (2017) 231-259.   DOI
14 A. Laik, K. Bhanumurthy, G.B. Kale, J. Nucl. Mater. 305 (2002) 124-133.   DOI
15 William D. Callister Jr., David G. Rethwisch, Material Science and Engineering an Introduction, eighth ed., Wiley, 1999, pp. 123-133.
16 T. Ogata, M. Akabori, A. Itoh, Mater. Trans. 44 (2003) 47- 52.   DOI