Browse > Article
http://dx.doi.org/10.4283/JKMS.2012.22.4.117

Half-metallicity at the Surfaces of Rocksalt and Zinc-blende Sodium Nitride  

Kim, Dong-Chul (Department of Electrical and Electronics Engineering, Halla University)
Bialek, Beata (Department of Physics, Inha University)
Lee, Jae-Il (Department of Physics, Inha University)
Abstract
Compounds such as NaN belong to an interesting class of materials in which a magnetic order may appear despite the lack of d electrons. The magnetic properties of these materials are ascribed to the partially filled p shells. Recently, on the basis of electronic structure calculations from first principles, it has been found that NaN is a ferromagnetic half-metal in rocksalt (RS) and zinc-blende (ZB) structures with half-metallic band gaps in majority electron channels. The former structure has appeared to be more stable. From the first-principles calculation, we found that the half-metallic properties of the bulk RS and ZB NaN are conserved at the RS(001) and ZB(110) surfaces. Due to the interactions between Na s and N p electrons, N atoms become positively polarized. In the RS NaN (001) the calculated values of the magnetic moments of the N atoms is about $0.73{\mu}_B$. The magnetic moment on the N atom in the top most layer of ZB(110) is slightly larger than that of the RS(001) surface, i.e., $0.75{\mu}_B$. The Na atoms in the both structure are hardly polarized.
Keywords
half-metallicity; surface magnetism; electronic structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. A. de Groot, F. M. Muller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).   DOI
2 S. P. Lewis, P. B. Allen, and T. Sasaka, Phys. Rev. B 55, 10253 (1997).   DOI   ScienceOn
3 Y. S. Dedkov, U. Rudiger, and G. Guntherrodt, Phys. Rev. B 65, 064417 (2002).   DOI   ScienceOn
4 H. Akinaga, T. Manago, and M. Shirai, Jap. J. Appl. Phys. 39, L1118 (2000).   DOI   ScienceOn
5 W. H. Xie, Y. Q. Xu, B. G. Liu, and D. G. Pettifor, Phys. Rev. Lett. 91, 037204 (2003).   DOI   ScienceOn
6 I. Galanakis and P. Mavropoulos, Phys. Rev. B 67, 104417 (2003).   DOI   ScienceOn
7 K. Kusakabe, M. Geshi, H. Tsukamoto, and N. Suzuki, J. Phys.: Condens. Matter 16, 55639 (2004).
8 M. Sieberer, J. Redinger, S. Khmelevskyi, and P. Mohn, Phys. Rev. B 73, 024404 (2006).   DOI   ScienceOn
9 G. Y. Gao, K. L. Yao, E. Sasioglu, L. M. Sandratskii, Z. L. Liu, and J. L. Jiang, Phys. Rev. B 75, 174442 (2005).
10 G. Volnianska and P. Boguslawski, Phys. Rev. B 75, 224418 (2007).   DOI   ScienceOn
11 E. Yan, Physica B 407, 879 (2012).   DOI   ScienceOn
12 E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).   DOI
13 M. Weinert, G. Schneider, R. Podloucky, and J. Redinger, J. Phys.: Condens. Matter 21, 084201 (2009).   DOI   ScienceOn
14 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)   DOI
15 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).   DOI
16 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).   DOI   ScienceOn
17 D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977).   DOI   ScienceOn