• Title/Summary/Keyword: Metallic fuel

Search Result 246, Processing Time 0.023 seconds

Effects of Cobalt Protective Coating Prepared by DC Electroplating on Ferritic Stainless Steel for SOFC Interconnect (직류 전기도금을 이용한 고체산화물 연료전지 금속연결재용 페라이트계 스테인리스 스틸의 코발트 보호막 코팅 효과)

  • Hong, Jong-Eun;Lim, Tak-Hyung;Song, Rak-Hyun;Lee, Seung-Bok;Shin, Dong-Ryul;Yoo, Young-Sung;Lee, Dok-Yol
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.116-124
    • /
    • 2009
  • We investigated the influences of cobalt coating deposited by DC electroplating on the ferritic stainless steel, STS 430, as a protective layer on a metallic interconnect for SOFC applications. Cobalt coated STS 430 revealed a uniform and denser-packing oxide surface and a reduced growth rate of $Cr_2O_3$ scales after oxidation at $800^{\circ}C$in air. Cobalt coating layer was oxidized to $CoCo_2O_4$ and Co containing mixed oxide spinels such as $Co_2CrO_4$, $CoCr_2O_4$, and $CoCrFeO_4$. The area specific resistance value of Co coated sample was $0.020\;{\Omega}cm^2$ lower than that of uncoated at $800^{\circ}C$ in air during 500 h. After 1000 h oxidation, cobalt oxide coating layer suppressed chromium outward diffusion.

Effect of Vapor Deposition on the Interdiffusion Behavior between the Metallic Fuel and Clad Material (금속연료-피복재 상호확산 거동에 미치는 기상증착법의 영향)

  • Kim, Jun Hwan;Lee, Byoung Oon;Lee, Chan Bock;Jee, Seung Hyun;Yoon, Young Soo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.549-556
    • /
    • 2011
  • This study aimed to evaluate the performance of diffusion barriers in order to prevent fuel-cladding chemical interaction (FCCI) between the metallic fuels and the cladding materials, a potential hazard for nuclear fuel in sodium-cooled fast reactors. In order to prevent FCCI, Zr or V metal is deposited on the ferritic-martensitic stainless steel surface by physical vapor deposition with a thickness up to $5{\mu}m$. The diffusion couple tests using uranium alloy (U-10Zr) and a rare earth metal such as Ce-La alloy and Nd were performed at temperatures between 660~800$^{\circ}C$. Microstructural analysis using SEM was carried out over the coupled specimen. The results show that significant interdiffusion and an associated eutectic reaction ocurred in the specimen without a diffusion barrier. However, with the exception of the local dissolution of the Zr layer in the Ce-La alloy, the specimens deposited with Zr and V exhibited superior eutectic resistance to the uranium alloy and rare earth metal.

Fabrication and Performance Test in Stacks of Planar Solid Oxide Fuel Cell under 1kW (1kW 이하의 평판형 SOFC 스택제작 및 성능평가)

  • Cho, Nam-Ung;Hwang, Soon-Cheol;Han, Sang-Moo;Kim, Yeoung-Woo;Kim, Seng-Goo;Jun, Jae-Ho;Kim, Do-Hyeong;Jun, Joong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.121-124
    • /
    • 2007
  • Stacks of solid oxide fuel cell under 1kW max power were designed on planar type employing anode supported cell and metallic interconnects. The stacks composed of 3-cells, 8-cells, and 16-cells were fabricated by using single cell purchased from Indec, sealant and interconnect prepared at RIST. In performance test of the final 16-cells stacks, OCV was recorded to be 16.7 V. Peak power and power density were 1 kW, 0.77 $W/cm^{2}$ at $820^{\circ}C$, respectively. In addition, the long term degradation rate of the power exhibited 2.25 % in 500 h at $750^{\circ}C$.

  • PDF

Performances of Metallic (sole, composite) and Non-Metallic Anodes to Harness Power in Sediment Microbial Fuel Cells

  • Haque, Niamul;Cho, Daechul;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.363-367
    • /
    • 2014
  • One chambered sediment microbial fuel cell (SMFC) was equipped with Fe, brass (Cu/Zn), Fe/Zn, Cu, Cu/carbon cloth and graphite felt anode. Graphite felt was used as common cathode. The SMFC was membrane-less and mediator-less as well. Order of anodic performance on the basis of power density was Fe/Zn ($6.90Wm^{-2}$) > Fe ($6.03Wm^{-2}$) > Cu/carbon cloth ($2.13Wm^{-2}$) > Cu ($1.13Wm^{-2}$) > brass ($Cu/Zn=0.24Wm^{-2}$) > graphite felt ($0.10Wm^{-2}$). Fe/Zn composite anode have twisted 6.73% more power than Fe alone, Cu/carbon cloth boosted power production by 65%, and brass (Cu/Zn) produced 65% less power than Cu alone. Graphite felt have shown the lowest electricity generation because of its poor galvanic potential. The estuarine sediment served as supplier of oxidants or electron producing microbial flora, which evoked electrons via a complicated direct microbial electron transfer mechanism or making biofilm, respectively. Oxidation reduction was kept to be stationary over time except at the very initial period (mostly for sediment positioning) at anodes. Based on these findings, cost effective and efficient anodic material can be suggested for better SMFC configurations and stimulate towards practical value and application.

Fabrication and Performance Test in Stacks up to 1kW Planar Solid Oxide Fuel Cell (1kW 평판형 SOFC 스택제작 및 성능평가)

  • Cho, Nam-Ung;Hwang, Soon-Cheoi;Han, Sang-Moo;Kim, Yeong-Woo;Kim, Seung-Goo;Jun, Jae-Ho;Kim, Do-Hyeong;Jun, Joong-Hwan
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.5-13
    • /
    • 2007
  • Stacks of solid oxide fuel cell with 1kW max power performance were designed on planar type employing anode-supported cells and metallic interconnects. The stacks composed of 3-cells, 8-cells, and 16-cells were fabricated and tested in serials by using anode-supported cells purchased from Indec, and sealants/interconnects prepared at RIST. In the performance test of the final 16-cells stack, OCV was recorded to be 16.7V. The peak power and the power density showed 1 kW, $0.77W/cm^2$ at $820^{\circ}C$, respectively. In addition, the long-term degradation rate of the power exhibited 2.25 % during 500h at $750^{\circ}C$.

  • PDF

Characteristics of Electricity Production by Metallic and Non-metallic Anodes Immersed in Mud Sediment Using Sediment Microbial Fuel Cell

  • Haque, Niamul;Cho, Dae-Chul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1745-1753
    • /
    • 2014
  • Sediment microbial fuel cell (SMFC), equipped with Zn, Al, Cu, Fe or graphite felt (GF) anode and marine sediment, was performed. Graphite felt was used as a common cathode. SMFC was single chambered and did not use any redox mediator. The aim of this work was to find efficient anodic material. Oxidation reduction potential (ORP), cell voltage, current density, power density, pH and chemical oxygen demand (COD) were measured for SMFC's performance.. The order of maximum power density was $913mWm^{-2}$ for Zn, $646mWm^{-2}$ for Fe, $387.8mWm^{-2}$ for Cu, $266mWm^{-2}$ for Al, and $127mWm^{-2}$ for graphite felt (GF). The current density over voltage was found to be strongly correlated with metal electrodes, but the graphite felt electrode, in which relatively weaker electricity was observed because of its bio-oriented mechanism. Metal corrosion reactions and/or a complicated microbial electron transfer mechanism acting around the anodic compartment may facilitate to generate electricity. We presume that more sophisticated selection of anodic material can lead to better performance in SMFC.