• Title/Summary/Keyword: Metallic catalyst

Search Result 79, Processing Time 0.022 seconds

A Study on the Reaction Characteristics of Steam Reforming Reaction over Catalyzed Porous Membrane (다공성 촉매 분리막을 이용한 수증기 개질 반응 특성 연구)

  • Hong, Sung Chang;Lee, Sang Moon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.198-203
    • /
    • 2014
  • In this study, steam reforming reaction and surface characteristics of Ni metal foam plate were investigated. Valence state of Ni could be changed by pretreatment, and metallic Ni species exposed on surface as a active site play important role in steam reforming reaction. Porous catalytic membrane also was prepared by mixing of Ni metal foam plate and Ni-YSZ catalyst to control the pore size and assign the catalytic function in Ni metal foam plate. In SEM analysis results, Pore size of Ni metal foam plate could be controlled and Ni-YSZ catalyst well dispersed on surface. Ni based porous catalytic membrane had a similar steam reforming activity regardless of space velocity.

Electrical breakdown free SWCNT thin film transistors on flexible polyimide substrate

  • Park, Jae-Hyeon;Ha, Jeong-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.58-58
    • /
    • 2010
  • Carbon nanotubes (CNTs) have been extensively studied owing to its superior electrical properties, especially high electron mobility, which can be applied to various nano-electronic devices. However, synthesized CNTs have a mixture of metallic and semiconducting tubes so that their separation has been a tremendous obstacle to the practical application in electronic device structures. Among the different separation methods, electrical breakdown process to selectively burn out the metallic tubes has been quite successful though it needs additional process in the fabrication of device structures. Here, we report on the selective but not perfect growth of semiconducting nanotubes via use of diluted ferritin catalyst. SWCNTs were grown on ferritin catalyst, where the concentration of the ferritin solution was changed. In this way, we could fabricate the electrical breakdown free SWCNT thin film transistors on the flexible polyimide (PI) substrate. When we used the ferritin diluted by 1/2000, ~ 60 % of the SWCNT thin film transistors showed a perfect p-type behavior with an on/off current ratio higher than $10^5$ and on-current greater than $10^{-7}$ A. We will also discuss the photo-response of such formed thin film transistors over both visible and UV light.

  • PDF

Removal of Impurities by Magnetic Separation from Waste Fluidized Cracking Catalyst for Its Reuse (폐FCC 촉매의 재활용 과정에서 자력 선별법에 의한 불순물 제거 연구)

  • Ban Bong-Chan;Lee Jin-Suk;Kim Dong-Su
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.55-64
    • /
    • 2003
  • Presently, the reuse of waste FCC catalysts, which generated from the refining process of crack oil, after the removal of con-taminated metallic impurities have not been attempted domestically yet because the separation technology f3r the impurities from waste catalysts has not been established. As a basic study far the reusable portion from the waste FCC catalysts and treatment of metallic impurities are assured, there will be invoked an significant contribution not only in the recycling of abandoned wastes up to date but also in the treatment efficiency of wastes and extraction of economical benefits from them. The magnetic separation of impurities such as Fe, Ni, and V, from waste FCC catalyst has been attempted with or without its pre-oxidation at high temperature for the purpose of its reuse. The results showed that the separability of impurities by magnetic force was high far non-preoxidized catalysts compared with preoxidized ones, and employment of screen-type matrix showed a higher separation efficiency than ball-type matrix. The separability increased with the strength of magnetic field, and the method of ball matrix has separation efficiency of maximum 51.10%. The amount of metallic impurities was in the decreasing order of V, Ni, and Fe depending upon ICP analysis.

Effect of Pt/Al2O3-based Catalysts on Removal Efficiency of Hydrogen (Pt/Al2O3계 촉매의 특성이 수소제어 활성에 미치는 영향 연구)

  • Won, Jong Min;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.221-229
    • /
    • 2017
  • In this study, a wet impregnation method was applied to catalysts based on the active metal Pt in order to confirm the oxidation characteristics of various commercial alumina supports at room temperature. The catalysts were characterized using XPS, CO-chemisorption, and BET. Various $Pt/Al_2O_3$ catalysts controlled the oxygen species of Pt by the electronegativity of electrons and charges when the catalyst was prepared according to the heat treatment conditions. The reason that the dispersion degree decreases with increasing Pt loading seems to be attributed to HT (Huttig Temperature) of Pt. In addition, the minimum hydrogen concentration that can be controlled at room temperature can control hydrogen from metallic Pt up to 1.0 vol% at over 70.09% in the catalyst.

Effect of Acetate Promotor on the Pd-Au/SiO2-catalyzed Synthesis of Vinyl Acetate from the Reaction of Ethylene with Acetic Acid (Pd-Au/SiO2 촉매에 의한 에틸렌과 아세트산으로부터 비닐 아세트산염의 생성반응에 대한 아세트산염의 촉진 효과)

  • Atashi, Hossein;Motahari, Kazem;Tabrizi, Farshad Farshchi;Sarkari, Majid;Fazlollahi, Farhad
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.92-97
    • /
    • 2011
  • The effect of Group I alkali acetate promoters on vinyl acetate (VA) synthesis was evaluated. Catalyst product selectivity and ethylene conversion are compared to the unpromoted catalyst in the fixed-bed reactor with oxidation reaction of ethylene and acetic acid in gaseous phase over Pd-Au/$SiO_2$ catalyst. It was found that: a) the promoters were stabilized on the catalyst surface, b) common effect for the alkali promoted Pd-Au catalysts increaseed in product selectivity and ethylene conversion compared to unpromoted catalyst (these effects increase from top to the bottom of Group I). These promoting effect is due to the common-ion effect of acetate, present in the reaction, resulting in an increase in the activity of the catalyst. In addition a complementary theory for the effect of Au in the structure of the catalyst is proposed the imposition of distribution of palladium particles through decreasing the particle's diameter.

A Deep Investigation of the Thermal Decomposition Process of Supported Silver Catalysts

  • Jiang, Jun;Xu, Tianhao;Li, Yaping;Lei, Xiaodong;Zhang, Hui;Evans, D.G.;Sun, Xiaoming;Duan, Xue
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1832-1836
    • /
    • 2014
  • A deep understanding of the metallic silver catalysts formation process on oxide support and the formation mechanism is of great scientific and practical meaning for exploring better catalyst preparing procedures. Herein the thermal decomposition process of supported silver catalyst with silver oxalate as the silver precursor in the presence of ethylenediamine and ethanolamine is carefully investigated by employing a variety of characterization techniques including thermal analysis, in situ diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, and X-ray diffraction. The formation mechanism of supported silver particles was revealed. Results showed that formation of metallic silver begins at about $100^{\circ}C$ and activation process is essentially complete below $145^{\circ}C$. Formation of silver was accompanied by decomposition of oxalate group and removal of organic amines. Catalytic performance tests using the epoxidation of ethylene as a probe reaction showed that rapid activation (for 5 minutes) at a relatively low temperature ($170^{\circ}C$) afforded materials with optimum catalytic performance, since higher activation temperatures and/or longer activation times resulted in sintering of the silver particles.

A Study on Enhancement of Nitrate Removal Efficiency using Surface-Modified Zero-Valent Iron Nanoparticles (표면개질된 영가철 나노입자를 이용한 질산성 질소 제거율 향상에 대한 연구)

  • Lim, Taesook;Cho, Yunchul;Cho, Changhwan;Choi, Sangil
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.517-524
    • /
    • 2016
  • In order to treat groundwater containing high levels of nitrate, nitrate reduction by nano sized zero-valent iron (nZVI) was studied using batch experiments. Compared to nitrate removal efficiencies at different mass ratios of $nitrate/Fe^0$, the removal efficiency at the mass ratio of 0.02% was the highest(54.59%). To enhance nitrate removal efficiency, surface modification of nZVI was performed using metallic catalysis such as Pd, Ni and Cu. Nitrate removal efficiency by Cu-nZVI (at $catalyst/Fe^0$ mass ratio of 0.1%) was 66.34%. It showed that the removal efficiency of Cu-nZVI was greater than that of the other catalysts. The observed rate constant ($k_{obs}$) of nitrate reduction by Cu-nZVI was estimated to $0.7501min^{-1}$ at the Cu/Fe mass ratio of 0.1%. On the other hand, TEM images showed that the average particle sizes of synthetic nZVI and Cu-nZVI were 40~60 and 80~100 nm, respectively. The results imply that catalyst effects may be more important than particle size effects in the enhancement of nitrate reduction by nZVI.

Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin

  • Aliyu, A;Abdulkareem, AS;Kovo, AS;Abubakre, OK;Tijani, JO;Kariim, I
    • Carbon letters
    • /
    • v.21
    • /
    • pp.33-50
    • /
    • 2017
  • In this study, Fe-Ni bimetallic catalyst supported on kaolin is prepared by a wet impregnation method. The effects of mass of kaolin support, pre-calcination time, pre-calcination temperature and stirring speed on catalyst yields are examined. Then, the optimal supported Fe-Ni catalyst is utilised to produce multi-walled carbon nanotubes (MWCNTs) using catalytic chemical vapour deposition (CCVD) method. The catalysts and MWCNTs prepared using the optimal conditions are characterized using high resolution transmission electron microscope (HRTEM), high-resolution scanning electron microscope (HRSEM), electron diffraction spectrometer (EDS), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD). The XRD/EDS patterns of the prepared catalyst confirm the formation of a purely crystalline ternary oxide ($NiFe_2O_4$). The statistical analysis of the variance demonstrates that the combined effects of the reaction temperature and acetylene flow rate predominantly influenced the MWCNT yield. The $N_2$ adsorption (BET) and TGA analyses reveal high surface areas and thermally stable MWCNTs. The HRTEM/HRSEM micrographs confirm the formation of tangled MWCNTs with a particle size of less than 62 nm. The XRD patterns of the MWCNTs reveal the formation of a typical graphitized carbon. This study establishes the production of MWCNTs from a bi-metallic catalyst supported on kaolin.

Pt-Ru, Pt-Ni bi-metallic catalysts for heavy hydrocarbon reforming (고 탄화수소 개질을 위한 Pt-Ru, Pt-Ni 이원금속촉매에 관한 연구)

  • Lee, Sanghp;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.97.2-97.2
    • /
    • 2011
  • Pt-Ru and Pt-Ni bimetallic catalysts were prepared and tested for heavy hydrocarbon reforming. Metals were supported on CGO($Ce_{0.8}Gd_{0.2}O_{2.0-x}$) by incipient wetness method. The prepared catalysts were characterized by Temperature programmed reduction(TPR). Oxidative steam reforming of n-dodecane was conducted to compare the activity of the catalysts. The reforming temperature was varied from $500^{\circ}C$ to $800^{\circ}C$ at fixed $O_2$/C of 0.3, $H_2O$/C of 3.0 and GHSV of 5,000/h.Reduction peaks of metal oxide, surface CGO and bulk CGO were detected. Reduction temperature of metal oxide decreased over the bi-metallic catalysts. It is considered that interaction between metals leads to decrease interaction between metal and oxygen. On the other hands, reduction temperatures of surface CGO were dectected in the order of Pt-Ru > Pt-Ni > Pt. low reduction temperatures of surface CGO indicates the low activation energy for oxygen ion conduction to metal. Oxygen ion conduction is known as de-coking mechanism of ionic conducting supports such as CGO. In activity test, fuel conversion was in the same order of Pt-Ru > Pt-Ni > Pt. Especially, 100% of fuel conversion was obtained over Pt-Ru catalysts at $500^{\circ}C$.

  • PDF

A Study on Oxygen Diffusion Characteristics According to Changes in Flow Field Shape of Polymer Electrolyte Membrane Fuel Cell Metallic Bipolar Plate for Building (건물용 고분자 전해질 연료전지 금속분리판 유동장 형상 변화에 따른 산소 확산 특성에 대한 연구)

  • PARK, DONGHWAN;SOHN, YOUNG-JUN;CHOI, YOON-YOUNG;KIM, MINJIN;HONG, JONGSUP
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.245-255
    • /
    • 2021
  • Various studies about metallic bipolar plates have been conducted to improve fuel cell performance through flow field design optimization. These research works have been mainly focused on fuel cells for vehicle, but not fuel cells for building. In order to reduce the price and volume of fuel cell stacks for building, it is necessary to apply a metallic flow field, In this study, for a metallic flow field applied to a fuel cell for building, the effect of a change in the flow field shape on the performance of a polymer electrolyte membrane fuel cell was confirmed using a model and experiments with a down-sizing single cell. As a result, the flow field using a metal foam outperforms the channel type flow field because it has higher internal differential pressure and higher reactants velocity in gas diffusion layer, resulting in higher water removal and higher oxygen concentration in the catalyst layer than the channel type flow field. This study is expected to contribute to providing basic data for selecting the optimal flow field for the full stack of polymer electrolyte membrane fuel cells for buildings.