Electrical breakdown free SWCNT thin film transistors on flexible polyimide substrate

  • 박재현 (고려대학교 화공생명공학과) ;
  • 하정숙 (고려대학교 화공생명공학과)
  • Published : 2010.02.17

Abstract

Carbon nanotubes (CNTs) have been extensively studied owing to its superior electrical properties, especially high electron mobility, which can be applied to various nano-electronic devices. However, synthesized CNTs have a mixture of metallic and semiconducting tubes so that their separation has been a tremendous obstacle to the practical application in electronic device structures. Among the different separation methods, electrical breakdown process to selectively burn out the metallic tubes has been quite successful though it needs additional process in the fabrication of device structures. Here, we report on the selective but not perfect growth of semiconducting nanotubes via use of diluted ferritin catalyst. SWCNTs were grown on ferritin catalyst, where the concentration of the ferritin solution was changed. In this way, we could fabricate the electrical breakdown free SWCNT thin film transistors on the flexible polyimide (PI) substrate. When we used the ferritin diluted by 1/2000, ~ 60 % of the SWCNT thin film transistors showed a perfect p-type behavior with an on/off current ratio higher than $10^5$ and on-current greater than $10^{-7}$ A. We will also discuss the photo-response of such formed thin film transistors over both visible and UV light.

Keywords