• Title/Summary/Keyword: Metallic Materials

Search Result 1,332, Processing Time 0.028 seconds

Influence of shape and finishing on the corrosion of palladium-based dental alloys

  • Milheiro, Ana;Muris, Joris;Kleverlaan, Cornelis J.;Feilzer, Albert J.
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.56-61
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate the effects of the surface treatment and shape of the dental alloy on the composition of the prosthetic work and its metallic ion release in a corrosive medium after casting. MATERIALS AND METHODS. Orion Argos (Pd-Ag) and Orion Vesta (Pd-Cu) were used to cast two crowns and two disks. One of each was polished while the other was not. Two as-received alloys were also studied making a total of 5 specimens per alloy type. The specimens were submersed for 7 days in a lactic acid/sodium chloride solution (ISO standard 10271) and evaluated for surface structure characterization using SEM/EDAX. The solutions were quantitatively analysed for the presence of metal ions using ICP-MS and the results were statistically analysed with one-way ANOVA and a Tukey post-hoc test. RESULTS. Palladium is released from all specimens studied (range $0.06-7.08{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$), with the Pd-Cu alloy releasing the highest amounts. For both types of alloys, ion release of both disk and crown pairs were statistically different from the as-received alloy except for the Pd-Ag polished crown (P>.05). For both alloy type, disk-shaped pairs and unpolished specimens released the highest amounts of Pd ions (range $0.34-7.08{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$). Interestingly, in solutions submerged with cast alloys trace amounts of unexpected elements were measured. CONCLUSION. Shape and surface treatment influence ion release from dental alloys; polishing is a determinant factor. The release rate of cast and polished Pd alloys is between $0.06-0.69{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$, which is close to or exceeding the EU Nickel Directive 94/27/EC compensated for the molecular mass of Pd ($0.4{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$). The composition of the alloy does not represent the element release, therefore we recommend manufacturers to report element release after ISO standard corrosion tests beside the original composition.

Instrumented Indentation Technique: New Nondestructive Measurement Technique for Flow Stress-Strain and Residual Stress of Metallic Materials (계장화 압입시험: 금속재료의 유동 응력-변형률과 잔류응력 평가를 위한 신 비파괴 측정 기술)

  • Lee, Kyung-Woo;Choi, Min-Jae;Kim, Ju-Young;Kim, Kwang-Ho;Kwon, Dong-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.306-314
    • /
    • 2006
  • Instrumented indentation technique is a new way to evaluate nondestructive such mechanical properties as flow properties, residual stress and fracture toughness by analyzing indentation load-depth curves. This study evaluated quantitatively the flow properties of steels and residual stress of weldments. First, flow properties can be evaluated by defining a representative stress and strain from analysis of deformation behavior beneath the rigid spherical indenter and the parameters obtained from instrumented indentation tests. For estimating residual stress, the deviatoric-stress part of the residual stress affects the indentation load-depth curve, so that by analyzing the difference between the residual-stress-induced indentation curve and residual-stress-free curve, the quantitative residual stress of the target region can be evaluated. The algorithm for flow property evaluation was verified by comparison with uniaxial tensile test and the residual stress evaluation model was compared to mechanical cutting and ED-XRD results.

Experimental Study on the Flash Over Delay Effects according to the Prevention of Flame Spread between Composite Material Panels (복합자재의 패널 간 화염확산방지에 따른 플래시오버 지연 효과에 대한 실험적 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • A sandwich panel is a composite material composed of a double-sided noncombustible material and insulation core which is used in the inner, outer walls, and roof structure of a building. Despite its excellent insulation performance, light weight and excellent constructability, a flame is brought into the inside of the panel through the joint between the panels, melting the core easily and causing casualties and property damage due to the rapid spread of flame. The current Building Law provides that the combustion performance of finishing materials for buildings should be determined using a fire test on a small amount of specimen and only a product that passes the stipulated performance standard should be used. This law also provides that in the case of finishing materials used for the outer walls of buildings, only materials that secured noncombustible or quasi-noncombustible performance should be used or flame spread prevention (FSP) should be installed. The purpose of this study was to confirm the difference between the dangers of horizontal and vertical fire spread by applying FSP, which is applied to finishing materials used for the outer walls of buildings limitedly to a sandwich panel building. Therefore, the combustion behavior and effects on the sandwich panel according to the application of FSP were measured through the construction to block the spread of flame between the panels using a full scale fire according to the test method specified in ISO 13784-1 and a metallic structure. The construction of FSP on the joint between the panels delayed the spread of flame inside the panels and the flash over time was also delayed, indicating that it could become an important factor for securing the fire safety of a building constructed using complex materials.

Study on the feasibility of metallic saggar for synthesizing NCM cathode active materials-I (NCM 계 양극활물질 합성용 금속질 내화갑 가능성 연구-I)

  • Yong Il Park;Ji Hun Jung;Sung Hyun Woo;Jung Heon Lee;Hyeong-Jun Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.103-107
    • /
    • 2024
  • In this study, nickel, a pure metal material, was proposed as a saggar for synthesizing NCM [Li(NixCoyMnz)O2] cathode active material. Nickel is known as a metal that is resistant to oxidation and has a high melting point. Nickel is one of the main components of NCM cathode material and was expected to be free from problems with contamination from saggar during cathode material synthesis. We sought to confirm the possibility of nickel as a saggar for synthesizing NCM cathode active materials. When a Ni metal crucible and Ni0.8Co0.1Mn0.1(OH)2 (NCM 811) precursor material were reacted at 900℃ for a long time, the change in the reaction layer on the surface of the crucible over time was analyzed. The nickel crucible reaction layer formed during heat treatment at 900℃ was nickel oxide, and is thought to have been created by simultaneous oxygen diffusion from the cathode precursor oxide and reaction with oxygen in the atmosphere. The change in thickness of the oxide layer appears to slow down after 480 hours, which suggests that the rate of oxygen diffusion from the precursor is reduced. It remained combined without falling out of the crucible until 480 hours. However, it was confirmed that the oxide layer falls off after 720 hours, so it is thought that it can be used as saggar for NCM synthesis only for a certain period of time.

A Study on Iron Manufacturing and Technology through Analysis Reports of Iron artifacts in the Baekje Area (유물분석 자료를 통한 백제지역의 제철과 철기 제작기술 연구)

  • Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.335-343
    • /
    • 2014
  • This study classified the result of non-metallic inclusion analysis and result of microstructure investigation on the ironware excavated in the Baekje region into Han River, Geum River, and Yeongsan River to estimate the iron making temperature and study the characteristics of regional and temporal characteristics of the heat treatment technology and steel making technology. Regardless of era, bloom iron and sponge iron are judged to be the major method for making as a directreduction process in all three regions. The result of the reinterpretation of the non-metallic inclusion by the oxide ternary constitutional diagram suggest that the temperature inside of the furnace is estimated to be between $1,100{\sim}1,300^{\circ}C$ while making the steel. The magnetic iron ores are the major raw material of steel ore and irons with high $TiO_2$ are estimated to use iron sands. Ironware with $CaO/SiO_2$ rate higher than 0.4% are considered to have artificially added the flux of calcareous materials. It was found that the iron making method is the solid caburizing-steel which caburizes low-carbon steels by the CO gas and $CO_2$ gas created when heating the forging furnace with charcoal. Also, the ironware manufacturers in the Baekje during 3rd century recognized the heat treatment technology as they performed carburizing process and quenching to intentionally increase the strength of necessary parts.

Characterization of In(Al)GaN layer grown by mixed-source hydride vapor phase epitaxy (혼합소스 HVPE에 의해 성장된 In(Al)GaN 층의 특성)

  • Hwang, S.L.;Kim, K.H.;Jang, K.S.;Jeon, H.S.;Choi, W.J.;Chang, J.H.;Kim, H.S.;Yang, M.;Ahn, H.S.;Bae, J.S.;Kim, S.W.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.157-161
    • /
    • 2006
  • InGaN layers on GaN templated sapphire (0001) substrates were grown by mixed-source hydride vapor phase epitaxy (HVPE) method. In order to get InGaN layers, Ga-mixed In metal and $NH_3$ gas were used as group III and group V source materials, respectively. The InGaN material was compounded from chemical reaction between $NH_3$ and indium-gallium chloride farmed by HCl flowed over metallic In mixed with Ga. The grown layers were confirmed to be InGaN ternary crystal alloys by X-ray photoelectron spectroscopy (XPS). In concentration of the InGaN layers grown by selective area growth (SAG) method was investigated by the photoluminescence (PL) and cathodoluminescence (CL) measurements. Indium concentration was estimated to be in the range 3 %. Moreover, as a new attempt in obtaining InAlGaN layers, the growth of the thick InAlGaN layers was performed by putting small amount of Ga and Al into the In source. We found the new results that the metallic In mixed with Ga (and Al) as a group III source material could be used in the growth process of the In(Al)GaN layers by the mixed-source HVPE method.

Acute Pulmonary Toxicity and Body Distribution of Inhaled Metallic Silver Nanoparticles

  • Kwon, Jung-Taek;Minai-Tehrani, Arash;Hwang, Soon-Kyung;Kim, Ji-Eun;Shin, Ji-Young;Yu, Kyeong-Nam;Chang, Seung-Hee;Kim, Dae-Seong;Kwon, Yong-Taek;Choi, In-Ja;Cheong, Yun-Hee;Kim, Jun-Sung;Cho, Myung-Haing
    • Toxicological Research
    • /
    • v.28 no.1
    • /
    • pp.25-31
    • /
    • 2012
  • The purpose of this study was to determine the acute pulmonary toxicity of metallic silver nanoparticles (MSNPs, 20.30 nm in diameter). Acute pulmonary toxicity and body distribution of inhaled MSNPs in mice were evaluated using a nose-only exposure chamber (NOEC) system. Bronchoalveolar lavage (BAL) fluid analysis, Western blotting, histopathological changes, and silver burdens in various organs were determined in mice. Mice were exposed to MSNPs for 6 hrs. The mean concentration, total surface area, volume and mass concentrations in the NOEC were maintained at $1.93{\times}10^7$ particles/$cm^3$, $1.09{\times}10^{10}\;nm^2/cm^3$, $2.72{\times}10^{11}\;nm^3/cm^3$, and 2854.62 ${\mu}g/m^3$, respectively. Inhalation of MSPNs caused mild pulmonary toxicity with distribution of silver in various organs but the silver burdens decreased rapidly at 24-hrs post-exposure in the lung. Furthermore, inhaled MSNPs induced activation of mitogen-activated protein kinase (MAPK) signaling in the lung. In summary, single inhaled MSNPs caused mild pulmonary toxicity, which was associated with activated MAPK signaling. Taken together, our results suggest that the inhalation toxicity of MSNPs should be carefully considered at the molecular level.

Improvement of Fat Suppression and Artifact Reduction Using IDEAL Technique in Head and Neck MRI at 3T

  • Hong, Jin Ho;Lee, Ha Young;Kang, Young Hye;Lim, Myung Kwan;Kim, Yeo Ju;Cho, Soon Gu;Kim, Mi Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.44-52
    • /
    • 2016
  • Purpose: To quantitatively and qualitatively compare fat-suppressed MRI quality using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) with that using frequency selective fat-suppression (FSFS) T2- and postcontrast T1-weighted fast spin-echo images of the head and neck at 3T. Materials and Methods: The study was approved by our Institutional Review Board. Prospective MR image analysis was performed in 36 individuals at a single-center. Axial fat suppressed T2- and postcontrast T1-weighted images with IDEAL and FSFS were compared. Visual assessment was performed by two independent readers with respect to; 1) metallic artifacts around oral cavity, 2) susceptibility artifacts around upper airway, paranasal sinus, and head-neck junction, 3) homogeneity of fat suppression, 4) image sharpness, 5) tissue contrast of pathologies and lymph nodes. The signal-to-noise ratios (SNR) for each image sequence were assessed. Results: Both IDEAL fat suppressed T2- and T1-weighted images significantly reduced artifacts around airway, paranasal sinus, and head-neck junction, and significantly improved homogeneous fat suppression in compared to those using FSFS (P < 0.05 for all). IDEAL significantly decreased artifacts around oral cavity on T2-weighted images (P < 0.05, respectively) and improved sharpness, lesion-to-tissue, and lymph node-to-tissue contrast on T1-weighted images (P < 0.05 for all). The mean SNRs were significantly improved on both T1- and T2-weighted IDEAL images (P < 0.05 for all). Conclusion: IDEAL technique improves image quality in the head and neck by reducing artifacts with homogeneous fat suppression, while maintaining a high SNR.

Formation Mechanism of Pores in Ni-P Coated Carbon Fiber Prepared by Electroless Plating Upon Annealing (무전해 니켈-인 도금법을 이용하여 도금된 탄소 섬유의 열처리 과정에서 나타나는 다공성 구조 생성 메커니즘 분석)

  • Ham, Seung Woo;Sim, Jong Ki;Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.438-442
    • /
    • 2013
  • In the present work, electroless plating was used for coating thin films consisting mainly of Ni and P on carbon fiber. Structural changes appeared upon the post-annealing at various temperatures of the Ni-P film on carbon fiber was studied using various analysis methods. Scanning, a flat surface structure of Ni-P film on carbon fiber was found after electroless plating of Ni-P film on carbon fiber without post-annealing, whereas annealing at $350^{\circ}C$ resulted the formation of porous structures. With increasing the annealing temperature to $650^{\circ}C$ with an interval of $50^{\circ}C$, the pore size increased, but the density decreased. X-ray diffraction (XRD) showed the existence of metallic Ni, and Ni-P compounds before post-annealing, whereas the post-annealing resulted in the appearance of NiO peaks, and the decrease in the intensity of the peak of metallic Ni. Using X-ray photoelectron spectroscopy (XPS), phosphorous oxides were detected on the surface upon annealing at $650^{\circ}C$, and $700^{\circ}C$, which can be attributed to the phosphorous compounds originally existing in the deeper layers of the Ni films, which undergo sublimation and escape from the film upon annealing. Escape of phosphorous species from the bulk of Ni-P film upon annealing could leave a porous structure in the Ni films. Porous materials can be of potential applications in diverse fields due to their interesting physical properties such as high surface area, and methods for fabricating porous Ni films introduced here could be easily applied to a large-scale production, and therefore applicable in diverse fields such as environmental filters.

Clinical Application of Radial Head Prosthesis (요골두 치환술의 임상적 적용)

  • Moon, Jun-Gyu
    • Clinics in Shoulder and Elbow
    • /
    • v.14 no.1
    • /
    • pp.140-145
    • /
    • 2011
  • Purpose: Installing a radial head prosthesis has developed into a reliable procedure to replace the native radial head for treating unreconstructible radial head fracture when this is associated with an unstable elbow or forearm. A variety of implants have been developed and these are now commercially available. This article reviews the literature related to the indications, the available implants and the surgical techniques of radial head replacement arthroplasty. Materials and Methods: The main indication for a metallic radial head prosthesis is a comminuted fracture that is not amenable to reconstruction, and particularly if it is associated with complex elbow injuries. Excision of the radial head should be avoided in the presence of combined injured ligaments or interosseous membrane injury. Three different implants are available in Korea, including the bipolar, press fit monopolar and loose fit monopolar radial head prostheses. A primary technical goal of radial head arthroplasty is the insertion of an implant that closely replicates the native radial head. The major pitfall when using a metallic radial head prosthesis is the insertion of a longer implant, which results in overstuffing of the radiocapitellar joint. Results and Conclusion: Satisfactory clinical results can be anticipated when a radial head prosthesis is used for the correct indications and when a systemic approach is undertaken to ensure proper sizing. For the future studies, we need data regarding the long term outcomes and comparison of the various types of prostheses.