Browse > Article
http://dx.doi.org/10.5487/TR.2012.28.1.025

Acute Pulmonary Toxicity and Body Distribution of Inhaled Metallic Silver Nanoparticles  

Kwon, Jung-Taek (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University)
Minai-Tehrani, Arash (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University)
Hwang, Soon-Kyung (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University)
Kim, Ji-Eun (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University)
Shin, Ji-Young (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University)
Yu, Kyeong-Nam (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University)
Chang, Seung-Hee (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University)
Kim, Dae-Seong (Center for Materials Measurement, Division of Industrial Metrology, Korea Research Institute of Standards and Science)
Kwon, Yong-Taek (HCT)
Choi, In-Ja (Wonjin Institute of Occupational and Environmental Health)
Cheong, Yun-Hee (Wonjin Institute of Occupational and Environmental Health)
Kim, Jun-Sung (R&D Center, Biterials Co., Ltd.)
Cho, Myung-Haing (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University)
Publication Information
Toxicological Research / v.28, no.1, 2012 , pp. 25-31 More about this Journal
Abstract
The purpose of this study was to determine the acute pulmonary toxicity of metallic silver nanoparticles (MSNPs, 20.30 nm in diameter). Acute pulmonary toxicity and body distribution of inhaled MSNPs in mice were evaluated using a nose-only exposure chamber (NOEC) system. Bronchoalveolar lavage (BAL) fluid analysis, Western blotting, histopathological changes, and silver burdens in various organs were determined in mice. Mice were exposed to MSNPs for 6 hrs. The mean concentration, total surface area, volume and mass concentrations in the NOEC were maintained at $1.93{\times}10^7$ particles/$cm^3$, $1.09{\times}10^{10}\;nm^2/cm^3$, $2.72{\times}10^{11}\;nm^3/cm^3$, and 2854.62 ${\mu}g/m^3$, respectively. Inhalation of MSPNs caused mild pulmonary toxicity with distribution of silver in various organs but the silver burdens decreased rapidly at 24-hrs post-exposure in the lung. Furthermore, inhaled MSNPs induced activation of mitogen-activated protein kinase (MAPK) signaling in the lung. In summary, single inhaled MSNPs caused mild pulmonary toxicity, which was associated with activated MAPK signaling. Taken together, our results suggest that the inhalation toxicity of MSNPs should be carefully considered at the molecular level.
Keywords
Inhalation; Silver nanoparticles; Pulmonary toxicity; Distribution; Mitogen-activated protein kinase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Granqvist, C. and Buhrman, R. (1976). Ultrafine metal particles. J. Appl. Phys., 47, 2200-2219.   DOI   ScienceOn
2 Jain, P. and Pradeep, T. (2005). Potential of silver nanoparticlecoated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng., 90, 59-63.   DOI   ScienceOn
3 Ji, J.H., Jung, J.H., Kim, S.S., Yoon, J.U., Park, J.D., Choi, B.S., Chung, Y.H., Kwon, I.H., Jeong, J., Han, B.S., Shin, J.H., Sung, J.H., Song, K.S. and Yu, I.J. (2007). Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol., 19, 857-871   DOI   ScienceOn
4 Jung, J.H., Oh, H.C., Noh, H.S., Ji, J.H. and Kim, S.S. (2006). Metal nanoparticle generation using a small ceramic heater with a local heating area. J. Aerosol Sci., 37, 1662-1670.   DOI   ScienceOn
5 Kim, H.W., Park, I.K., Cho, C.S., Lee, K.H., Beck, G.R., Jr., Colburn, N.H. and Cho, M.H. (2004). Aerosol delivery of glucosylated polyethylenimine/phosphatase and tensin homologue deleted on chromosome 10 complex suppresses Akt downstream pathways in the lung of K-ras null mice. Cancer Res., 64, 7971-7976.   DOI   ScienceOn
6 American Conference of Governmental Industrial Hygienists. (2001). Threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinatti, OH.
7 Bleehen, S.S., Gould, D.J., Harrington, C.I., Durrant, T.E., Slater, D.N. and Underwood, J.C. (1981). Occupational argyria; light and electron microscopic studies and X-ray microanalysis. Br. J. Dermatol., 104, 19-26.   DOI   ScienceOn
8 Sung, J.H., Ji, J.H., Yoon, J.U., Kim, D.S., Song, M.Y., Jeong, J., Han, B.S., Han, J.H., Chung, Y.H., Kim, J., Kim, T.S., Chang, H.K., Lee, E.J., Lee, J.H. and Yu, I.J. (2008). Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal. Toxicol., 20, 567-574.   DOI   ScienceOn
9 Yu, K.N., Lee, S.M., Han, J.Y., Park, H., Woo, M.A., Noh, M.S., Hwang, S.K., Kwon, J.T., Jin, H., Kim, Y.K., Hergenrother, P.J., Jeong, D.H., Lee, Y.S. and Cho, M.H. (2007). Multiplex targeting, tracking, and imaging of apoptosis by fluorescent surface enhanced Raman spectroscopic dots. Bioconjug. Chem., 18, 1155-1162.   DOI   ScienceOn
10 Samet, J.M., Graves, L.M., Quay, J., Dailey, L.A., Devlin, R.B., Ghio, A.J., Wu, W., Bromberg, P.A. and Reed, W. (1998). Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am. J. Physiol., 275, L551-L558.
11 Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziesenis, A., Heinzmann, U., Schramel, P. and Heyder, J. (2001). Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ. Health Perspect., 109, 547-551.   DOI
12 Tian, J., Wong, K.K., Ho, C.M., Lok, C.N., Yu, W.Y., Che, C.M., Chiu, J.F. and Tam, P.K. (2007). Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem., 2, 129- 136.   DOI   ScienceOn
13 Wang, X.B., Gao, H.Y., Hou, B.L., Huang, J., Xi, R.G. and Wu, LJ. (2007). Nanoparticle realgar powders induce apoptosis in U937 cells through caspase MAPK and mitochondrial pathways. Arch. Pharm. Res., 30, 653-658.   과학기술학회마을   DOI   ScienceOn
14 Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H. and Cho, M.H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine., 3, 95-101.   DOI   ScienceOn
15 Warheit, D.B., Carakostas, M.C., Hartsky, M.A. and Hansen, J.F. (1991). Development of a short-term inhalation bioassay to assess pulmonary toxicity of inhaled particles: comparisons of pulmonary responses to carbonyl iron and silica. Toxicol. Appl. Pharmacol., 107, 350-368.   DOI   ScienceOn
16 Warheit, D.B., Webb, T.R., Colvin, V.L., Reed, K.L. and Sayes, C.M. (2007). Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol. Sci., 95, 270- 280.   DOI   ScienceOn
17 Wu, W., Samet, J.M., Ghio, A.J. and Devlin, R.B. (2001). Activation of the EGF receptor signaling pathway in airway epithelial cells exposed to Utah Valley PM. Am. J. Physiol. Lung. Cell Mol. Physiol., 281, L483-L489.
18 Kwon, J.T., Hwang, S.K., Jin, H., Kim, D.S., Minai-Tehrani, A., Yoon, H.J., Choi, M., Yoon, T.J., Han, D.Y., Kang, Y.W., Yoon, B.I., Lee, J.K. and Cho, M.H. (2008). Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J. Occup. Health, 50, 1-6.   DOI   ScienceOn
19 Lee, H.Y., Park, H.K., Lee, Y.M., Kim, K. and Park, S.B. (2007). A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem. Commun., 28, 2959-2961.
20 Lee, K. (1983). Change of particle size distribution during Brownian coagulation. J. Colloid. Interf. Sci., 92, 315-325.   DOI   ScienceOn
21 Monteiller, C., Tran, L., MacNee, W., Faux, S., Jones, A., Miller, B. and Donaldson, K. (2007). The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup. Environ. Med., 64, 609-615.   DOI   ScienceOn
22 Rosenman, K.D., Moss, A. and Kon, S. (1979). Argyria: clinical implications of exposure to silver nitrate and silver oxide. J. Occup. Med., 21, 430-435.
23 Moss, A.P., Sugar, A., Hargett, N.A., Atkin, A., Wolkstein, M. and Rosenman, K.D. (1979). The ocular manifestations and functional effects of occupational argyrosis. Arch. Ophthalmol., 97, 906-908.   DOI
24 Perez, J.M., Simeone, F.J., Saeki, Y., Josephson, L. and Weissleder, R. (2003). Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc., 125, 10192-10193.   DOI   ScienceOn
25 Roberts, E.S., Richards, J.H., Jaskot, R. and Dreher, K.L. (2003). Oxidative stress mediates air pollution particle-induced acute lung injury and molecular pathology. Inhal. Toxicol., 15, 1327- 1346.   DOI   ScienceOn
26 Rosenman, K.D., Seixas, N. and Jacobs, I. (1987). Potential nephrotoxic effects of exposure to silver. Br. J. Ind. Med., 44, 267- 272.
27 Cano, E. and Mahadevan, L.C. (1995). Parallel signal processing among mammalian MAPKs. Trends. Biochem. Sci., 20, 117- 122.   DOI   ScienceOn
28 Davis, R.J. (1993). The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem., 268, 14553-14556.
29 DiVincenzo, G.D., Giordano, C.J. and Schriever, L.S. (1985). Biologic monitoring of workers exposed to silver. Int. Arch. Occup. Environ. Health, 56, 207-215.   DOI
30 Drake, P.L. and Hazelwood, K.J. (2005). Exposure-related health effects of silver and silver compounds: a review. Ann.Occup. Hyg., 49, 575-585.   DOI   ScienceOn
31 Duffin, R., Tran, L., Brown, D., Stone, V. and Donaldson, K. (2007). Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal. Toxicol., 19, 849- 856.   DOI   ScienceOn