• 제목/요약/키워드: Metallic Glass Matrix Composite

검색결과 16건 처리시간 0.02초

Ni계 벌크 비정질 복합재의 제조 (Synthesis of Ni-based Bulk Metallic Glass Composites)

  • 이진규
    • 한국분말재료학회지
    • /
    • 제15권4호
    • /
    • pp.297-301
    • /
    • 2008
  • The Ni-based bulk metallic glass matrix composites were fabricated by spark plasma sintering of mixture of gas-atomized metallic glass powders and ductile brass powders. The successful consolidation of metallic glass matrix composite was achieved by strong bonding between metallic glass powders due to viscous flow deformation and lower stress of ductile brass powders in the supercooled liquid state during spark plasma sintering. The composite shows some macroscopic plasticity after yielding, which was obtained by introducing a ductile second brass phase in the Ni-based metallic glass matrix.

Fe-Based Nano-Structured Powder Reinforced Zr-Based Bulk Metallic Glass Composites by Powder Consolidation

  • Cho, Seung-Mok;Han, Jun-Hyun;Lee, Jin-Kyu;Kim, Yu-Chan
    • 한국재료학회지
    • /
    • 제19권9호
    • /
    • pp.504-509
    • /
    • 2009
  • The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.

비정질 기지 복합재 코팅층의 미세조직 분석 및 기계적 거동 (Analysis and Mechanical Behavior of Coating Layer in Metallic Glass Matrix Composite)

  • 장범택;이승훈
    • 대한기계학회논문집A
    • /
    • 제38권6호
    • /
    • pp.629-636
    • /
    • 2014
  • 비정질합금이 가지고 있는 우수한 기계적 성질과 화학적 특성을 부품소재에 표면개질을 목적으로 고속화염 용사법으로 대면적 코팅층을 형성하였고 내열성이 높은 자융성합금과 초경합금 성분들을 적절히 혼합하여 비정질기지 복합재료를 제조하여 코팅들의 미세조직 관찰과 나노인덴테이션을 이용한 미세표면의 기계적 거동을 분석하였다. 각 코팅층의 미세조직을 관찰한 결과, 단일상 비정질 코팅에는 미용융 입자와 lamellae 영역이 존재하고 자융성합금이 고용된 복합재에는 in-situ $Cr_2Ni_3$ 석출물, 자융성합금과 초경합금성분이 함께 혼합된 코팅층은 석출물과 ex-situ WC 강화입자가 공존하였다. 이들 미세표면의 기계적 거동은 제 2 상이 고용된 비정질 기지 복합재의 코팅층의 기계적 특성이 전체적으로 향상되었다.

Effect of Carbon-Nanotube Addition on Thermal Stability of Ti-based Metallic Glass Composites

  • Hsu, Chih-Feng;Lee, Pee-Yew
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1057-1058
    • /
    • 2006
  • The preparation of $Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders was accomplished by the mechanical alloying of a pure Ti, Cu, Ni, Sn and carbon nanotube (CNT) powder mixture after 8 h milling. In the ball-milled composites, the initial CNT particles were dissolved in the Ti-based alloy glassy matrix. The bulk metallic glass composite was successfully prepared by vacuum hot pressing the as-milled CNT/$Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders. A significant hardness increase with the CNT additions was observed for the consolidated composite compacts.

  • PDF

나노 준결정상으로 강화된 Ti계 벌크 비정질기지 복합재의 제조 및 기계적 특성 고찰 (Fabrication and Mechanical Properties of Nanoquasicrystalline Phase Reinforced Ti-based Bulk Metallic Glass Matrix Composites)

  • 박진만;임가람;김태응;손성우;김도향
    • 한국주조공학회지
    • /
    • 제28권6호
    • /
    • pp.261-267
    • /
    • 2008
  • In-situ quasicrystalline icosahedral (I) phase reinforced Ti-based bulk metallic glass (BMG) matrix composites have been successfully fabricated by using two distinct thermal histories for BMG forming alloy. The BMG composite containing micron-scale Iphase has been introduced by controlling cooling rate during solidification, whereas nano-scale I-phase reinforced BMG composite has been produced by partial crystallization of BMG. For mechanical properties, micron-scale I-phase distributed BMG composite exhibited lower strength and plasticity compared to the monolithic BMG. On the other hand, nano-scale icosahedral phase embedded BMG composite showed enhanced strength and plasticity. These improved mechanical properties were attributed to the multiplication of shear bands and blocking of the shear band propagation in terms of isolation and homogeneous distribution of nanosize icosahdral phases in the glassy matrix, followed by stabilizing the mechanical and deformation instabilities.

Cu기 벌크 비정질 복합체의 성형 및 특성 (Consolidation and Characterization of Cu-based Bulk Metallic Glass Composites)

  • 이진규;김택수
    • 한국분말재료학회지
    • /
    • 제14권6호
    • /
    • pp.399-404
    • /
    • 2007
  • The Cu-based bulk metallic glass (BMG) composite was fabricated by spark plasma sintering (SPS) using of gas-atomized metallic glass powders and ductile brass powders. No defect such as pores and cavities was observed at the interface between the brass powder and the metallic glass matrix, suggesting that the SPS process caused a severe viscous flow of the metallic glass and brass phases in the supercooled liquid region, resulting in a full densification. The BMG composites shows some macroscopic plasticity after yielding, although the levels of strength decreased.

Consolidation of Bulk Metallic Glass Composites

  • Lee, Jin-Kyu;Kim, Hwi-Jun;Kim, Taek-Soo;Shin, Seung-Yong;Bae, Jung-Chan
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.848-849
    • /
    • 2006
  • Bulk metallic glass (BMG) composites combining a $Cu_{54}Ni_6Zr_{22}Ti_{18}$ matrix with brass powders or $Zr_{62}A_{l8}Ni_{13}Cu_{17}$ metallic glass powders were fabricated by spark plasma sintering. The brass powders and Zr-based metallic glass powders added for the enhancement of plasticity are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation. The BMG composites show macroscopic plasticity after yielding, and the plastic strain increased to around 2% without a decrease in strength for the composite material containing 20 vol% Zr-based amorphous powders. The proper combination of strength and plasticity in the BMG composites was obtained by introducing a second phase in the metallic glass matrix.

  • PDF

방전플라즈마 소결법에 의한 비정질/비정질 복합재의 제조 (Fabrication of Metallic Glass/metallic Glass Composites by Spark Plasma Sintering)

  • 이진규
    • 한국분말재료학회지
    • /
    • 제14권6호
    • /
    • pp.405-409
    • /
    • 2007
  • The Cu-based bulk metallic glass (BMG) composites containing Zr-based metallic glass phase have been consolidated by spark plasma sintering using the mixture of Cu-based and Zr-based metallic glass powders in their overlapped supercooled liquid region. The Zr-based metallic glass phases are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation process. The successful consolidation of BMG composites with dual amorphous phases was corresponding to the sound viscous flow of the two kinds of metallic glass powders in their overlapped supercooled liquid region.

Zr-Nb-Cu-Ni-Al 비정질 복합 재료의 변형거동과 성형성 (Room and High Temperature Deformation Behaviors and Estimation on Formability of Zr-based Bulk Metallic Glass Composite)

  • 전현준;이광석;;;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.199-202
    • /
    • 2008
  • In this study, we investigated the thermal properties of $Zr_{66.4}Nb_{6.4}Cu_{10.5}Ni_{8.7}Al_{8.0}$ by using a differential scanning calorimeter (DSC), and then analyzed the composition of dendrite phase by using X-ray diffraction (XRD). A series of uniaxial compression tests has been performed under the strain rates between $10^{-5}/s$ and $10^{-2}/s$ at room temperature and near SLR. This BMGC has higher high temperature strength than other Zr-based monolithic BMGs because in-situ formed crystalline phases hinder a feasible viscous flow of amorphous matrix. Warm formability is also estimated by laboratory-scale extrusion test within supercooled liquid region. It was found that BMGC has poor formability compared with nother Zr-based bulk metallic glass composite presumably due to large volume fraction of 'brittle' crystalline phases distributed within amorphous matrix.

  • PDF

Phase Transformation and Work-hardening Behavior of Ti-based Bulk Metallic Glass Composite

  • Hong, Sung Hwan;Kim, Jeong Tae;Park, Hae Jin;Kim, Young Seok;Park, Jin Man;Suh, Jin Yoo;Na, Young Sang;Lim, Ka Ram;Kim, Ki Buem
    • Applied Microscopy
    • /
    • 제45권2호
    • /
    • pp.37-43
    • /
    • 2015
  • In present work, work-hardening behavior of TiCu-based bulk metallic glass composite with B2 particles has been studied by systemic structural and mechanical investigations. After yield, pronounced work-hardening of the alloy was clearly exhibited, which was mainly related to the martensitic transformation as well as the deformation twinning in B2 particles during deformation. At the early plastic deformation stage (work-hardening stage), the stress-induced martensitic transformation from B2 phase to B19' phase and deformation-induced twinning of B19' phase was preferentially occurred in the around interface areas between B2 phase and amorphous matrix by stress concentration. The higher hardness value was observed in vicinity of interface within the B2 particles which are probably connected with martensitic transformation and deformation twinning. This reveals that the work-hardening phenomenon of this bulk metallic glass composite is a result of the hardening of B2 particles embedded in amorphous matrix.