• 제목/요약/키워드: Metal-Loading

검색결과 556건 처리시간 0.029초

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

주조도재관과 도재전장주조관의 치경부 변연적합도에 관한 비교 연구 (A Comparative Study on the Marginal Fit between Castable Ceramic(Dicor) Crowns and Metal-Ceramic Crowns)

  • 김정호;양재호;이선형
    • 대한치과보철학회지
    • /
    • 제26권1호
    • /
    • pp.51-61
    • /
    • 1988
  • The recently introduced castable glass ceramics incorporate properties characteristic of natural teeth and they are regarded as an ideal material to restore lost tooth structure. The purpose of this study was to compare the marginal fit of castable ceramic crown with that of the metal-ceramic crown in the process of heat treatment. Two master dies for castable ceramic crowns and metal-ceramic crowns were fabricated from being cast with the base metal. Each master die was duplicated with addition silicone and hard stone. Ten castable ceramic crowns were made on each hard stone die and their marginal openings were measured three times first, after casting; second, after ceramming; third, after shading. The other ten metal-ceramic crowns were made on each hard stone die and their marginal openings were measured three times : first, after casting; second, after degassing; third, after porcelain veneering. Each crown was seated on its master die with the constant force delivered by loading jig. And then, marginal openings were measured on four locations by optical projector at X50 magnification. The results were as follows: 1. The mean marginal openings of castable ceramic crowns were $31.1{\pm}12.7{\mu}m$ after casting; $44.6{\pm}12.8{\mu}m$ after ceramming; $51.2{\pm}16.8{\mu}m$ after shading. 2. The mean marginal openings of the metal-ceramic crowns were $26.2{\pm}13.8{\mu}m$ after casting; $29.8{\pm}10.3{\mu}m$ after degassing; $38.0{\pm}14.5{\mu}m$ after porcelain veneering. 3. There was significant increase in the marginal opening of castable ceramic crowns after ceramming, while metal-ceramic crowns sho(wed significant increase after porcelain veneering (p<0.05). 4. Marginal fit of metal-ceramic crown was better than that of castable ceramic crown (p<0.01).

  • PDF

합성액화연료 생산 기술: Fischer-Tropsch 합성용 촉매 (Synfuel Production Technology : Catalyst for Fischer-Tropsch Synthesis)

  • 박조용
    • 한국응용과학기술학회지
    • /
    • 제30권4호
    • /
    • pp.726-739
    • /
    • 2013
  • 피셔-트롭쉬 합성 반응은 촉매 표면에서 합성가스 (CO+$H_2$)를 탄화수소로 전환하는 반응이다. 코발트 또는 철계 촉매는 친환경적인 디젤 연료를 생산할 수 있고 합성가스의 전환율이 높은 촉매로 알려져 있다. 피셔-트롭쉬 반응에 사용되는 촉매의 활성은 촉매 표면에서의 활성점에 의존적이다. 활성점은 활성 물질의 크기, 담지량, 환원율, 지지체와 활성물질의 상호작용에 의해 결정된다. FT 촉매 제조 방법으로 활성물질의 크기를 조절하는 등의 새로운 방법들이 시도되고 있다. 여기에서는 촉매의 제조방법과 환원 특성을 비롯한 촉매의 형태와 반응 조건을 포함한 반응기 형태에 대해 알아보겠다.

LASER WELDING OF TI-NI SHAPE MEMORY ALLOY WIRE

  • Kim, Young-Sik;Kim, Jong-Do
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.139-144
    • /
    • 2002
  • Ti-50.9at%Ni wires were welded using pulsed YAG laser. The laser welded wires were tested for investigating the shape memo교 effect and the ability of super elasticity. The fatigue properties of the welded wires were investigated using the rotary bending fatigue tester specially designed for wires. Moreover, the effect of defocusing distance during laser welding on the static and fatigue properties was investigated. The shape memory effect and super elasticity of the laser welded wires were approximately identical with that of base metal at the test temperature below 353K. However, the welded wires were broken within elastic limit at the test temperature above 353k. Under the cyclic bending loading conditions, the welded wires could be useful only below the elastic limit, while the base metal had sufficient fatigue life even the stress induced M-phase region. The fatigue strength of the welded wires was about half of that of the base metal. The deterioration of the static and fatigue properties in the welded wires was proven to be from the large difference of the transformation behavior between the base metal and welded part that is caused by vaporization of Ni-content at the welded part during the welding process. The defocusing distance below 3mm acted more largely on lowering the strength of the welded wires than that of 6mm or 8mm.

  • PDF

복합재료/금속 계면의 혼합모드 피로 특성 (Mixed-Mode Fatigue Characteristics of Composite/Metal Interfaces)

  • 백상호;김원석;장창재;이정주
    • Composites Research
    • /
    • 제23권4호
    • /
    • pp.21-27
    • /
    • 2010
  • 대부분의 구조물 파괴는 피로에 의해서 발생한다. 따라서 지금까지 모드 혼합비가 피로 특성에 어떤 영향을 미치는지에 대한 수많은 연구가 수행되어 오고 있다. 하지만 대부분의 연구가 금속/금속 계면이나 복합재료 층간 분리에 관한 연구이다. 따라서 본 연구에서는 이종재료인 복합재료/금속 계면의 피로 특성에 대한 기초 자료를 얻고자 하였다. 이를 위하여 복합재료와 탄소강을 동시 경화법을 이용하여 접합한 SLB(single leg bending) 시편을 이용하여 피로 실험을 수행하였다. 특히, 피로 특성에 모드 혼합비$(G_{II}/G_T)$가 어떠한 영향을 미치는지에 대해 알아보고자 하였다. 전체적으로 모드 II 하중 성분 이 많을수록 균열진전속도가 빨라진다는 결과를 얻었다.

레이저 적층 마레이징강의 기계적 특성 및 피로 특성 (Fatigue and mechanical properties of laser deposited maraging steel)

  • 홍석관
    • Design & Manufacturing
    • /
    • 제12권3호
    • /
    • pp.36-41
    • /
    • 2018
  • Metal 3D printing is very useful for making the injection molds containing complex conformal cooling channels. The most important issue of the 3D printed molds is cost and life cycle. However, powder bed fusion (PBF) methods are vulnerable to fatigue loading because of the presence of pores and rough surfaces. In the present study, the fatigue test was performed to obtain fatigue analysis input data for predicting the durability of a 3D printed injection mold core. The metal 3D printer used to manufacture the specimen was OPM250L from Sodick, and the metal powder material was maraging steel. The ultrasonic fatigue testing method was adopted for the fatigue test. A key advantage of the ultrasonic fatigue method is that $10^8{\sim}10^9$ long cycle test data or more could be obtained within a relatively short period. Based on the results of the experiment, the effect of heat treatment was negligible. However, there was an apparent difference in durability depending on the presence or absence of the surface treatment.

Investigation on Ultimate Strength of STS304L Stainless Steel Welded Connection with Base Metal Fracture Using Finite Element Analysis

  • Lee, HooChang;Kim, TaeSoo;Hwang, BoKyung;Cho, TaeJun
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1139-1152
    • /
    • 2018
  • Many studies on the application of stainless steels as structural materials in buildings and infra-structures have been performed thanks to superior characteristics of corrosion resistance, fire resistance and aesthetic appeal. Experimental investigation to estimate the ultimate strength and fracture mode of the fillet-welded connections of cold-formed austenitic stainless steel (STS304L) with better intergranular corrosion resistance than that of austenitic stainless steel, STS304 commonly used has carried out by authors. Specimens were fabricated to fail by base metal fracture not weld metal fracture with main variables of weld lengths according to loading direction. All specimens showed a block shear fracture mode. In this paper, finite element analysis model was developed to predict the ultimate behaviors of welded connection and its validity was verified through the comparison with test results. Since the block shear behavior of welded connection due to stress triaxiality and shear-lag effects is different from that of bolted connection, stress and strain distributions in the critical path of tensile and shear fracture section were investigated. Test and analysis strengths were compared with those by current design specifications such as AISC, EC3 and existing researcher's proposed equations. In addition, through parametric analysis with extended variables, the conditions of end distance and longitudinal weld length for block shear fracture and tensile fracture were suggested.

Fatigue Properties of Ti-Ni Shape Memory Alloy Wire Welded by Nd: YAG Laser

  • Kim, Y.S.;Kim, J.D.;Kil, B.L.
    • International Journal of Korean Welding Society
    • /
    • 제3권1호
    • /
    • pp.39-44
    • /
    • 2003
  • The welded specimens were made by butt welding of the 2 wires of 50mm length using the pulsed YAG laser. The laser welded wires were tested for investigating the shape memory effect and the ability of super elasticity. The fatigue properties of the welded wires were investigated using the rotary bending fatigue tester specially designed for wires. Moreover, the effect of defocusing distance during laser welding on the static and fatigue properties was Investigated. The shape memory effect and super elasticity of the laser welded wires were approximately identical with that of base metal at the test temperature below 353K. However, the welded wires were broken within elastic limit at the test temperature above 353k. Under the cyclic bending loading conditions, the welded wires could be useful only below the elastic limit, while the base metal had sufficient fatigue life even the stress induced M-phase region. The fatigue strength of the welded wires was about half of that of the base metal. The deterioration of the static and fatigue properties in the welded wires was proven to be from the large difference of the transformation behavior between the base metal and welded part that is caused by vaporization of Ni-content at the welded part during the welding process. The defocusing distance below 3mm acted more largely on lowering the strength of the welded wires than that of 6mm or 8mm.

  • PDF

매입형 FRP봉과 보강철물을 보강한 철근콘크리트 보의 구조성능 평가 (Evaluation of Structural Performance of Reinforced Concrete Beams Retrofitted by Embedded FRP Rod and Metal Fittings)

  • 하기주;신종학;하영주;강현욱
    • 콘크리트학회논문집
    • /
    • 제24권4호
    • /
    • pp.445-452
    • /
    • 2012
  • 이 연구에서는 기존 철근콘크리트 건축물의 구조성능 향상을 위하여 매입형 FRP봉과 보강철물을 보강한 철근콘크리트 보의 구조성능을 평가하기 위하여 실험을 수행하였다. 매입형 FRP봉의 사용량, 보강철물 유무에 따라 총 7개의 실험체를 제작하고 실험을 수행하여 구조성능을 평가하였으며, 이 연구의 실험 결과를 근거로 다음과 같은 결론을 얻었다. 매입형 FRP봉 보강실험체(BCR 시리즈)의 경우 표준실험체(BSS)와 비교하여 21~55% 내력이 증가하였고, 매입형 FRP봉과 보강철물을 보강한 실험체(BCR-AC 시리즈)는 표준실험체(BSS)보다 최대내력이 21~63% 증가하였다. 그리고 매입형 FRP봉으로 보강된 실험체는 부착슬립, 피복분리 형태로 파괴되었으나, 매입형 FRP봉과 보강철물을 보강한 실험체는 보강철물의 구속효과로 부착슬립의 형태로 파괴되었다.

구조용 강재의 반복소성모델 분석 연구 (State of the Art of the Cyclic Plasticity Models of Structural Steel)

  • 이은택
    • 한국강구조학회 논문집
    • /
    • 제14권6호
    • /
    • pp.735-746
    • /
    • 2002
  • 소성이론이의 연구방향은 일반적으로 두 가지 대별된다. 첫 째는 강재의 소성변형을 적절하게 나타내는 응력-변형도 관계를 정립하는 것이고, 둘 째는 위의 과정을 이용한 기법을 개발하고 구조물을 설계하는 것이다. 소성이론을 연구하는데 한 가지 중요한 문제는 복잡한 하중이력에 대하여 소성영역에서 경화재료의 거동을 묘사하는 것이다. 또한 구조물이 강한 지진이나 바람하중을 받을 경우, 비례하중보다는 복잡한 불비례하중에 의하여 영향을 받는다. 따라서 소성이론과 강재의 소성거동에 대한 연구는 불비례하중의 거동과 영향을 나타낼 수 있어야 한다. 지금까지 많은 연구자들이 이 분야에서 이론을 발표하였고, 지금도 계속하여 새로운 소성모델 연구를 하고 있다. 본 논문은 지금까지 가장 많이 쓰이고 있는 소성 모델을 two-surface 소성모델을 중심으로 분석하고 각 소성모델의 특징과 문제점을 파악하였고 앞으로의 연구과제를 제안하였다.