• Title/Summary/Keyword: Metal temperature

Search Result 4,849, Processing Time 0.031 seconds

Microstructure and Impact Toughness of Weld Metal in Multipass Welded Super Duplex Stainless Steel (다층용접한 슈퍼 듀플렉스 스테인리스강 용접금속의 조직 및 충격인성)

  • Seo, Won-Chan;Park, Chan;Bang, Kook-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.27-32
    • /
    • 2012
  • The effects of reheating during welding on the microstructure and impact toughness of weld metal in 25% Cr super duplex stainless steels were investigated. Using different heat inputs, weld metals with different reheated regions were obtained. This showed that, depending on the reheating temperature, the microstructure in the reheated region was quite different from that of the as-deposited microstructure. When reheated into the ${\gamma}+{\alpha}$ temperature range, fine intragranular austenite was formed in the as-deposited columnar structure. However, when reheated above the ${\alpha}$ solvus temperature range, most of the columnar structure disappeared and fine equiaxed austenite and ferrite were formed. Because of the larger amount of fine austenite in the reheated region, a higher impact toughness was obtained in the weld metal with a higher amount of reheated region.

Preparation and Properties of Ni-Zn Ferrite by Coprecipitation Method (공침법에 의한 Ni-Zn Ferrite의 제조 및 물성연구)

  • Jung Goo Eun;Koh Jae Gui
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.338-342
    • /
    • 2004
  • Ni-Zn ferrite powder was obtained by wet method that was to be coprecipitated the metal nitrates, Fe($NO_3$)$_3$$9H_2$O, Ni($NO_3$)$_2$$6H_2$O, Zn($NO_3$)$_2$$6H_2$O to make a high permeability material. The composition of the ferrite powder was $Fe_2$$O_3$ 52 mol%, NiO 14.4 mol%, ZnO 33.6 mol%. Ni-Zn ferrite powder was compounded by precipitating metal nitrates with NaOH in vessel at the synthetic temperature of $90^{\circ}C$ for 8 hours. Calcination temperature and sintering temperature were $700^{\circ}C$ and $1150^{\circ}C$$1250^{\circ}C$, respectively, for 2 hours. And the other ferrite powder was also prepared by the wet ball milling that was to be mixed the metal oxides as same as the above chemical composition. We studied the properties of the powder and the electromagnetic characteristics of the sintered cores obtained from there two different processes. Wet direct process produced smaller particle size with narrower distribution of the size and more purified ferrite whose sintered cores had high permeability and high magnetization.

Formation and Growth Mechanisms of Flame-Synthesized Carbon Nanotubes and Nanofibers (화염합성 시의 탄소나노튜브와 나노섬유의 생성 및 성장 메커니즘)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Kang, Kyung-Tae;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.1
    • /
    • pp.18-24
    • /
    • 2004
  • Synthesis of carbon nanomaterials on a metal substrate by an ethylene fueled inverse diffusion flame was illustrated. Two stainless steel plates coated with $Ni(NO_3){_2}$ were folded with each other and used as a catalytic metal substrate. Carbon nanotubes and nanofibers with diameters of 20 - 60nm were found on the substrate. From the TEM-EDS analyses, most of the nanomaterials turned out to be Nicatalyzed. Carbon nanotubes were formed on the substrate in the region ranging from about 1,400K to 900K. The formation mechanisms of nanotubes and nanofibers were similar. The synthesis temperature of the nanofibers was lower than that of the nanotubes. The higher synthesis temperature of nanotubes might enhance the activity of the catalyst metal and produce more condensed carbons. The accumulated graphite layers led to form compartments to release the compressive stress in the layers. The growth of carbon nanotubes was bamboo-shaped showing compartments in the inside hollow. The distances between those compartments represented the growth rate that depended on the synthesis temperature.

  • PDF

The Effect of Misch Metal Addition on the Microstructure and Mechanical Property of Rapidly Solidified AZ91 Alloy (급속응고한 AZ91 합금의 미세조직 및 기계적 특성에 미치는 Misch metal 첨가의 영향)

  • Eum, Seung-Yeul;Park, Hoon-Mo;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.1
    • /
    • pp.29-37
    • /
    • 2000
  • The purpose of this study is to investigate the effect of misch metal addition on the microstructure and mechanical property of rapidly solidified AZ91 alloy by melt spinning process. As the contents of misch metal(rare earth element:Ce,La, Nd, Pr)was increased, the microstructure of RS ribbons and extrudates became finer than those of AZ91, and RE related phases($Al_{11}RE_3$, $Al_2RE$) were formed. At room temperature, the rapidly solidified AZ91+1 wt%Mm alloy showed the highest tensile strength, 430 MPa due to precipitation strengthening of${\beta}(Mg_{17}Al_{12})$ phase and Al11RE3 phase. At the elevated temperature, the mechanical property of AZ01+3 wt%Mm alloy was higher than those of other Mg alloys. The reasons were that $Al_{11}La_3$ phase was thermally stable and suppressed the grain growth. In contrast with $Al_{11}La_3$ phase, ${\beta}$ phase was thermally unstable and could not suppress the grain growth at the elevated temperature. Therefore, Al11RE3 phase contributed to improve the thermal stability of RS AZ91 Alloy.

  • PDF

Studies of Low Temperature Dyeing on Silk Fiber II. Low Temperature Dyeing of Silk Fiber with the Complex Dye (견의 저온염색에 관한 연구 II. 산성 Metal Complex 염료에 있어서의 저온염색)

  • 배도규;배현석
    • Journal of Sericultural and Entomological Science
    • /
    • v.35 no.1
    • /
    • pp.48-51
    • /
    • 1993
  • Using the new type auxiliary(K-1), dyeing experiment was done at the various dyeing conditions and the effects of auxiliary on the dyeing properties of metal complex dye for the silk fiber were dicussed. The exhaust rate was higher in the auxiliary 3% o.w.f. addition than sodium sulfate 50% o.w.f. The decreasing ratio of exhaust rate according to dye concentration increasing was lower at auxiliary addition than auxiliary non-addition. The exhaust rate according to increasing dyeing temperature was higher in the auxiliary addition than non-addition.

  • PDF

Light-activated mechanism for metal oxide gas sensors (금속 산화물 가스 센서의 광 활성화 센싱 메커니즘)

  • Oum, Wansik;Shin, Ka Yoon;Yu, Dong Jae;Kang, Sukwoo;Kim, Eun Bi;Kim, Hyoun Woo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.381-383
    • /
    • 2021
  • Light-activated metal oxide gas sensors have been investigated in recent decades. Light illumination enhances the sensing attributes, including the operational temperature, sensitivity, and selectivity. Unfortunately, high operating temperature is a major problem for gas sensors because of the huge energy consumption. Therefore, the importance of light-activated room-temperature sensing has increased. This paper reviews recent light-activated sensors and their sensing mechanisms with a specific focus on metal oxide gas sensors. Studies use the outstanding ZnO and SnO2 sensors to research photoactivation when illuminated by various sources such as ultraviolet (UV), halogen lamp, or monochromatic light. Photon induction generates electron-hole pairs that increase the number of adsorption sites of gas molecules and ions improving the sensor's sensing properties.

Operating condition optimization of liquid metal heat pipe using deep learning based genetic algorithm: Heat transfer performance

  • Ik Jae Jin;Dong Hun Lee;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2610-2624
    • /
    • 2024
  • Liquid metal heat pipes play a critical role in various high-temperature applications, with their optimization being pivotal to achieving optimal thermal performance. In this study, a deep learning based genetic algorithm is suggested to optimize the operating conditions of liquid metal heat pipes. The optimization performance was investigated in both single and multi-variable optimization schemes, considering the operating conditions of heat load, inclination angle, and filling ratio. The single-variable optimization indicated reasonable performance for various conditions, reinforcing the potential applicability of the optimization method across a broad spectrum of high-temperature industries. The multi-variable optimization revealed an almost congruent performance level to single-variable optimization, suggesting that the robustness of optimization method is not compromised with additional variables. Furthermore, the generalization performance of the optimization method was investigated by conducting an experimental investigation, proving a similar performance. This study underlines the potential of optimizing the operating condition of heat pipes, with significant consequences in sectors such as high temperature field, thereby offering a pathway to more efficient, cost-effective thermal solutions.

Riser Control Technology for Rectangle Cast Iron Blocks Applying the Heat Control Method of the Heater

  • Chul-Kyu Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_1
    • /
    • pp.797-803
    • /
    • 2024
  • In this study, a device was used to conduct heat to the riser by combining a cylindrical heater with the riser to maintain the molten metal above a certain temperature while continuously compensating for the shrinkage phenomenon that occurs as the molten metal solidifies in the product area. A cylindrical heater is coupled to the riser portion of the upper part of the upper mold, and a heater portion mold is formed between the riser and the cylindrical heater. The cylindrical heater is connected to a controller to control the temperature and a power supply. The cylindrical heater conducts a heat source to the molten metal located on the riser and can continuously compensate for the shrinkage of the cast product by heating the molten metal located on the riser or maintaining it at a constant temperature. The block without a riser had a large shrinkage cavity at the top, and the top became concave due to shrinkage. There is no shrinkage in the block with the Ø100 mm riser. Blocks that did not apply heaters to the Ø50 mm riser experienced shrinkage around the riser and also at the bottom. There is no shrinkage in the block with the Ø50 mm riser to which the heater was applied.

Deformation Analysis of Miniature Metal Bellows Charged Nitrogen for Temperature Change to Cryogenic Condition (극저온까지 온도변화에 따른 질소 충전 소형 금속 벨로우즈의 변형 해석)

  • Lee, Seung-Ha;Lee, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.81-88
    • /
    • 2009
  • Bellows is used to control temperature of a Joule-Thomson micro cryocooler. It is made of Nickelcobalt alloy that retains mechanical properties from cryogenic temperature to temperature of 570K. The geometry of bellows is an axisymmetric shell and Nitrogen with high pressure was charged at temperature of 293K. During cool-down process, the pressure and volume of Nitrogen are changed and must be satisfied with state equation. At cryogenic temperature, Nitrogen can exist as a part liquid and part vapor. Pressure-density-temperature behavior under this vaporliquid phase equilibrium is closely given by the Modified-Benedict-Webb-Rubin(MBWR) state equation. To evaluate deformation of bellows for temperature change, the numerical calculation of the volume within bellows and finite element analysis of bellows under internal pressure were iteratively performed until MBWR state equation is satisfied. The numerical results show that deformation of the bellows can be analyzed by the present method in a wide range of temperature including cryogenic temperature.