• Title/Summary/Keyword: Metal stamp

Search Result 36, Processing Time 0.041 seconds

Fabrication of 3D Paper-based Analytical Device Using Double-Sided Imprinting Method for Metal Ion Detection (양면 인쇄법을 이용한 중금속 검출용 3D 종이 기반 분석장치 제작)

  • Jinsol, Choi;Heon-Ho, Jeong
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 2022
  • Microfluidic paper-based analytical devices (μPADs) have recently been in the spotlight for their applicability in point-of-care diagnostics and environmental material detection. This study presents a double-sided printing method for fabricating 3D-μPADs, providing simple and cost effective metal ion detection. The design of the 3D-μPAD was made into an acryl stamp by laser cutting and then coating it with a thin layer of PDMS using the spin-coating method. This fabricated stamp was used to form the 3D structure of the hydrophobic barrier through a double-sided contact printing method. The fabrication of the 3D hydrophobic barrier within a single sheet was optimized by controlling the spin-coating rate, reagent ratio and contacting time. The optimal conditions were found by analyzing the area change of the PDMS hydrophobic barrier and hydrophilic channel using ink with chromatography paper. Using the fabricated 3D-μPAD under optimized conditions, Ni2+, Cu2+, Hg2+, and pH were detected at different concentrations and displayed with color intensity in grayscale for quantitative analysis using ImageJ. This study demonstrated that a 3D-μPAD biosensor can be applied to detect metal ions without special analysis equipment. This 3D-μPAD provides a highly portable and rapid on-site monitoring platform for detecting multiple heavy metal ions with extremely high repeatability, which is useful for resource-limited areas and developing countries.

Fabrication and Characterization of an Antistiction Layer by PECVD (plasma enhanced chemical vapor deposition) for Metal Stamps (PECVD를 이용한 금속 스탬프용 점착방지막 형성과 특성 평가)

  • Cha, Nam-Goo;Park, Chang-Hwa;Cho, Min-Soo;Kim, Kyu-Chae;Park, Jin-Goo;Jeong, Jun-Ho;Lee, Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.225-230
    • /
    • 2006
  • Nanoimprint lithography (NIL) is a novel method of fabricating nanometer scale patterns. It is a simple process with low cost, high throughput and resolution. NIL creates patterns by mechanical deformation of an imprint resist and physical contact process. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting process. Stiction between the resist and the stamp is resulted from this physical contact process. Stiction issue is more important in the stamps including narrow pattern size and wide area. Therefore, the antistiction layer coating is very effective to prevent this problem and ensure successful NIL. In this paper, an antistiction layer was deposited and characterized by PECVD (plasma enhanced chemical vapor deposition) method for metal stamps. Deposition rates of an antistiction layer on Si and Ni substrates were in proportion to deposited time and 3.4 nm/min and 2.5 nm/min, respectively. A 50 nm thick antistiction layer showed 90% relative transmittance at 365 nm wavelength. Contact angle result showed good hydrophobicity over 105 degree. $CF_2$ and $CF_3$ peaks were founded in ATR-FTIR analysis. The thicknesses and the contact angle of a 50 nm thick antistiction film were slightly changed during chemical resistance test using acetone and sulfuric acid. To evaluate the deposited antistiction layer, a 50 nm thick film was coated on a stainless steel stamp made by wet etching process. A PMMA substrate was successfully imprinting without pattern degradations by the stainless steel stamp with an antistiction layer. The test result shows that antistiction layer coating is very effective for NIL.

Fabrication of Plasmon Subwavelength Nanostructures for Nanoimprinting

  • Cho, Eun-Byurl;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.247-247
    • /
    • 2012
  • Plasmon subwavelength nanostructures enable the structurally modulated color due to the resonance conditions for the specific wavelength range of light with the nanoscale hole arrays on a metal layer. While the unique properties offered from a single layer of metal may open up the potential applications of integrated devices to displays and sensors, fabrication requirements in nanoscale, typically on the order of or smaller than the wavelength of light in a corresponding medium can limit the cost-effective implementation of the plasmonic nanostructures. Simpler nanoscale replication technologies based on the soft lithography or roll-to-roll nanoimprinting can introduce economically feasible manufacturing process for these devices. Such replication requires an optimal design of a master template to produce a stamp that can be applied for a roll-to-roll nanoimprinting. In this paper, a master mold with subwavelength nanostructures is fabricated and optimized using focused ion beam for the applications to nanoimprinting process. Au thin film layer is deposited by sputtering on a glass that serves as a dielectric substrate. Focused ion beam milling (FIB, JEOL JIB-4601F) is used to fabricate surface plasmon subwavelength nanostructures made of periodic hole arrays. The light spectrum of the fabricated nanostructures is characterized by using UV-Vis-NIR spectrophotometer (Agilent, Cary 5000) and the surface morphology is measured by using atomic force microscope (AFM, Park System XE-100) and scanning electron microscope (SEM, JEOL JSM-7100F). Relationship between the parameters of the hole arrays and the corresponding spectral characteristics and their potential applications are also discussed.

  • PDF

The Study on the Design and Manufacturing of Combined Die for Both Sides of Front Fender (Front Fender LH/RH 일체 금형설계 및 제작에 관한 연구)

  • Jung, Hyo-Sang;Lee, Seoung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.24-30
    • /
    • 1999
  • In the automobile development, press tool design and manufacturing are very difficult and need high cost experienced workers. Therefore, we concerned ourselves in the cost down and easy manufacturing. In this research, we have developed a tool for LH/RH of the front fender, which had difficulty in forming. We have carried out the drawing analysis by Pam-stamp and CATIA modeling. Finally, we get the optimal design parameter. As a result of try out, we found out the optimal width and margin at the center line for tool design. Also, in order to get good results we have to intaglio margin in the part of the wheel house and utilize double bead on every side except corner.

  • PDF

A Study on the Process Design and Deformation Analysis for Pressure Vessels by Finite Element Method (유한요소법을 활용한 압력용기의 설계 및 성형해석에 관한 연구)

  • 한규택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.460-467
    • /
    • 1998
  • The investigation deals with the manufacturing process design and deformation analysis for seamless pressure vessels Axisymmetric multistage deep drawing is a complex and important sheet metal forming process in the industry. In this study the process design for large size cylindrical shells with various thickness is performed and a general guideline for forming process design of pressure vessels will be suggested. Thus in this paper for the verification of the forming process design the forming analysis of pressure vessels will be carried out by PAM-STAMP which is on the basis of finite element analysis. In this case the formability of pressure vessels is evaluated using the results of computer simulation.

  • PDF

Small Electrode Ring Forming by Multi-Forming Process (멀티 성형 가공법을 활용한 전극용 소형 링 성형)

  • Yoon, Il-Chae;Ko, Tae-Jo;Lee, Chun;Kim, Hui-Sul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.38-45
    • /
    • 2009
  • Recently, LCD Backlight Unit is being replaced from cold cathode fluorescent lamp(CCFL) to external electrode fluorescent lamp(EEFL) because the EEFL has high energy efficiency and long life. Also, it can reduce energy consumption and weight. So far, external electrode ring for EEFL is produced by sheet metal press forming process. Therefore it had low precision and much material loss. To solve these problems, Multi-Forming process that has five step forming process was invented. However, low productivity is another barrier. Product speed that is controlled by the rotational speed cannot be increased due to the unsatisfied design specification. The reason is that the gap between rolled two edge parts of the sheet plate is tightly inspected. Regarding this factor, the understanding of forming behavior to each process is inevitable. This paper describes the CAE analysis of the multi-forming process by PAM-STAMP.

  • PDF

Fabrication of Transparent Conductive Film for Flexible Devices Using High-Resolution Roll Imprinting (고 정밀 롤 임프린팅을 이용한 유연 전자소자용 투명전극 제작)

  • Yu, Jong-Su;Yu, Semin;Kwak, Sun-Woo;Kim, Jung Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.975-979
    • /
    • 2014
  • Transparent conductive films (TCF) with excellent electrical properties and high mechanical flexibility have been widely studied because of their potential for application in optoelectronic devices such as light-emitting diodes, paper displays and organic solar cells. In this paper, we report on low-resistance and high-transparent TCF for flexible device applications. To fabricate a high-resolution roll imprinted TCF, the following steps were performed: the design and manufacture of an electroforming stamp mold, the fabrication of high-resolution roll imprinted on flexible film, the manufacture of Ag-nano paste which was filled into patterned film using a doctor blade process. Also, we was demonstrated with the successful application(ITO free organic photovoltaic) of the developed flexible TCF.

Improvement of PDMS graphene transfer method through surface modification of target substrate (폴리디메틸실록산(PDMS)을 이용한 그래핀 전사법 개선을 위한 계면처리 연구)

  • Han, Jae-Hyung;Choi, Mu-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.232-239
    • /
    • 2015
  • In this paper, we study the dry transfer technology utilizing PDMS (Polydimethylsiloxane) stamp of a large single-layer graphene grown on Cu-foil as catalytic metal by using Chemical Vapor Deposition (CVD). By changing the surface property of the target substrate through $UV/O_3$ treatment, we can transfer the graphene on the target substrate while minimizing mechanical damages of graphene layer. Multi-layer (1~4 layers) graphene was stacked on $SiO_2/Si$ wafer successfully by repeating thetransfer method/process and then optical transmittance and sheet resistance of graphene layers have been measured as a quality assessment.

A Study on the Behavior of Wrinkles in Cup Drawing with Al alloy by FEM (유한요소법에 의한 합금의 용기 성형시 Al 주름의 거동에 관한 연구)

  • Ko D.L.;Jeon C.Y.;Kim J.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1240-1243
    • /
    • 2005
  • The wrinkling in the flange and wall of a part is a predominant failure mode in stamping of sheet metal parts. In many cases this wrinkling may be eliminated by appropriate control of the blank holding force(BHF), but BHF affects the draw depth. Gotoh had studied the wrinkles under $20{\mu}$ in height. In general, the height of wrinkles could be limited under $200{\mu}$ practically. Therefore small BHF can be allowed so that the depth of drawing could be increased. This paper represents the variation of the wrinkles of flange in the part of cup drawing by using aluminium alloy A1050 and A5052. This simulation is used by the explicit finite elements code $PAM-STAMP^{TM}$. The computed results are compared with the experimental results to show the validity of the analysis.

  • PDF

Solid-Phase Speciation of Copper in Mine Wastes

  • Jeong, Jae-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.209-218
    • /
    • 2003
  • Ecosystems in the Keweenaw Peninsula region of Lake Superior, USA, were disturbed by over 500 million tons of copper-rich mine tailings during the period 1850-1968. Metals leaching from these mine residues have had dramatic effects on the ecosystems. Vast acreages of exposed tailings that are over 100 years old remain unvegetated because of the combination of metal toxicity, absence of nutrients, and temperature and water stress. Therefore, it is important to characterize and fractionate solid copper phases for assessing labile forms of copper in soils and sediments contaminated by the mining wastes. X-ray diffraction analyses indicate that calcite, quartz, hematite, orthoclase, and sanidine minerals are present as major minerals, whereas cuprite,tenorite, malachite, and chalcopyrite might be present as copper minerals in the mining wastes. Sequential extraction technique revealed that carbonate and oxide fractions were the largest pools of copper (ca. 50-80%) in lakeshore and wetland stamp sands whereas the organic matter fraction was the largest reservoir (ca. 32%) in the lake sediments. The concentrations of iron and copper were inversely correlated in the oxide fraction suggesting that copper may occur as a surface coating on iron oxides. As particle size and water contents decrease, the percent of the copper bound to the labile carbonate fraction increases.