• Title/Summary/Keyword: Metal sensor

Search Result 873, Processing Time 0.022 seconds

A Study on sorting out base metal using eddy current sensor (와전류 센서를 이용한 금속 모재 선별에 관한 연구)

  • Lee G.S.;Kim T.O.;Kim H.Y.;Ahn J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1788-1792
    • /
    • 2005
  • Eddy current sensor is representative instrument measuring gap to base metal and sensing trouble in base metal. The existing eddy current sensor works as measuring variance of sensor coil's inductance. But, sensor coil have phenomenon that not only inductance but also real resistance varies in real action. Conductivity and Permeability are main variable in sensor coil's varying impedance(inductance, real resistance). By searching relationship between conductivity-permeability and sensor coil's impedance, eddy current sensor gain advantage of elevation of accuracy, removal of alignment to each base metal, and continuous sensing to varying base metal.

  • PDF

A Study on a Dual Electromagnetic Sensor System for Weld Seam Tracking of I-Butt Joints

  • Kim, J.-W.;Shin, J.-H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.51-56
    • /
    • 2002
  • The weld seam tracking system for arc welding process uses various kinds of sensors such as arc sensor, vision sensor, laser displacement sensor and so on. Among the variety of sensors available, electro-magnetic sensor is one of the most useful methods especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fume generated during the welding process, and also by the surface condition of weldments. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation of the metal near the sensor, was developed for arc welding of sheet metal I-butt joints. The dual-electromagnetic sensor thus detects the offset displacement of weld line from the center of sensor head even though there's no clearance in the joint. A set of design variables of the sensor was determined far the maximum sensing capability through the repeated experiments. Seam tracking is performed by correcting the position of sensor to the amount of offset displacement every sampling period. From the experimental results, the developed sensor showed the excellent capability of weld seam detection when the sensor to workpiece distance is near less than 5 ㎜, and it was revealed that the system has excellent seam tracking ability for the I-butt joint of sheet metal.

  • PDF

A Study of a Dual-Electromagnetic Sensor for Automatic Weld Seam Tracking (용접선 자동추적을 위한 이중 전자기센서의 개발에 관한 연구)

  • 신준호;김재응
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.70-75
    • /
    • 2000
  • The weld seam tracking system for arc welding process uses various kinds of sensors such as arc sensor, vision sensor, laser displacement and so on. Among the variety of sensors available, electro-magnetic sensor is one of the most useful methods especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fume generated during the welding process, and also by the surface condition of weldments. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation of the metal near the sensor, was developed for arc welding of sheet metal butt-joints. The dual-electromagnetic sensor thus detects the offset displacement of weld line from the center of sensor head even though there's no clearance in the joint. A set of design variables of the sensor were determined for the maximum sensing capability through the repeated experiments. Seam tracking is performed by correcting the position of sensor to the amount of offset displacement every sampling period. From the experimental results, the developed sensor showed the excellent capability of weld seam detection when the sensor to workpiece distance is near less than 5 mm, and it was revealed that the system has excellent seam tracking ability for the butt-joint of sheet metal.

  • PDF

Temperature-Compensative Displacement Sensor based on a Pair of Fiber Bragg Gratings Attached to a Metal Band

  • Kim, Kwang Taek;Kim, Dong Geun
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.82-85
    • /
    • 2018
  • This paper proposes a new temperature-compensative displacement sensor with a pair of fiber Bragg gratings (FBG) attached to the inner and outer surfaces of an elastic metal band. The sensor can be also used as a temperature sensor with high sensitivity. The FBG pair shifted Bragg wavelengths in the same direction according to changes in the temperature. However, because the pressure of the metal band shifted a pair of Bragg wavelengths in the opposite direction, the displacement sensor could compensate for the effect of the temperature change in the proposed FBG pair. Results of the experiments showed that the two FBG displacement sensors responded linearly and symmetrically with respect to the displacement, and the displacement could be obtained using the difference between the two Bragg wavelengths.

Flexible multimode pressure sensor based on liquid metal

  • Zhou, Xiaoping;Yu, Zihao
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.839-853
    • /
    • 2021
  • In this paper, a novel multimode liquid metal-based pressure sensor is developed. The main body of the sensor is composed of polydimethylsiloxane (PDMS) elastomer. The structure of the sensor looks like a sandwich, in which the upper structure contains a cylindrical cavity, and the bottom structure contains a spiral microchannel, and the middle partition layer separates the upper and the bottom structures. Then, the liquid metal is injected into the top cavity and the bottom microchannel. Based on linear elastic fracture mechanics, the deformation of the microchannel cross-section is theoretically analyzed. The changes of resistance, capacitance, and inductance of the microchannel under pressure are deduced, and the corresponding theoretical models are established. The theoretical values of the pressure sensor are in good agreement with experimental data, implying that the developed theoretical model can explain the performance of the sensor well.

Development of Hazardous Objects Detection Technology based on Metal/Non-Metal Detector (금속/비금속 복합센서기반 위험물 탐지기술 개발)

  • Yoo, Dong-Su;Kim, Seok-Hwan;Lee, Jeong-Yeob;Lee, Seok-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.120-125
    • /
    • 2014
  • Conventional handheld metal detectors use a single induction coil to detect the metallic parts of explosive objects, and the detector generates an acoustic signal from its magnetic response to a metallic object so that an operator can confirm the existence of mines. Though metal detectors have very useful detection mechanisms to find mines, it is easy to cause a high false alarm ratio due to the detection of non-explosive metallic items such as cans, nails and other pieces of metal, etc. Also, because of the physical characteristic of a metal detector it is hard to detect non-metallic objects such as mines made of wood or plastic. Furthermore, the operator must move it to the left and right slowly and repeatedly to attain enough sensor signals to confirm the existence of mines using only a monotonous acoustic signal. To resolve the disadvantages of handheld detectors, many new approaches have been attempted, such as an arrayed detector and a visualization algorithm based on metal/non-metal sensor. In this paper, we introduce a visualization algorithm with a metal/non-metal complex sensor, an arrayed metal/non-metal sensor and the their testing and evaluation.

A new reconfigurable liquid-metal-antenna-based sensor

  • Zhou, Xiaoping;Fu, Yihui;Zhu, Hantao;Yu, Zihao;Wang, Shanyong
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.353-369
    • /
    • 2022
  • In this paper, a new sensor chip with frequency reconstruction range of 2.252 GHz ~ 2.450 GHz is designed and fabricated. On this basis, a self-designed "T-shaped" shell is added to overcome the disadvantage of uneven deformation of the traditional steel shell, and the range of the sensor chip is expanded to 0 kN ~ 96 kN. The liquid metal antenna is used to carry out a step-by-step loading test, and the relationship between the antenna resonance frequency and the pressure load is analyzed. The results show that there is a good linear relationship between the pressure load and the resonant frequency. Therefore, the liquid metal antenna can be regarded as a pressure sensor. The cyclic loading and unloading experiments of the sensor are carried out, and different loading rates are used to explore the influence on the performance of the sensor. The loading and unloading characteristic curves and the influence characteristic curves of loading rate are plotted. The experimental results show that the sensor has no residual deformation during the cycle of loading and unloading. Moreover, the influence of temperature on the performance of the sensor is studied, and the temperature correction formula is derived.

Semiconductor-Type MEMS Gas Sensor for Real-Time Environmental Monitoring Applications

  • Moon, Seung Eon;Choi, Nak-Jin;Lee, Hyung-Kun;Lee, Jaewoo;Yang, Woo Seok
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.617-624
    • /
    • 2013
  • Low power consuming and highly responsive semiconductor-type microelectromechanical systems (MEMS) gas sensors are fabricated for real-time environmental monitoring applications. This subsystem is developed using a gas sensor module, a Bluetooth module, and a personal digital assistant (PDA) phone. The gas sensor module consists of a $NO_2$ or CO gas sensor and signal processing chips. The MEMS gas sensor is composed of a microheater, a sensing electrode, and sensing material. Metal oxide nanopowder is drop-coated onto a substrate using a microheater and integrated into the gas sensor module. The change in resistance of the metal oxide nanopowder from exposure to oxidizing or deoxidizing gases is utilized as the principle mechanism of this gas sensor operation. The variation detected in the gas sensor module is transferred to the PDA phone by way of the Bluetooth module.

Palladium-based Electrical and Optical Hydrogen Gas Sensors

  • Jinwoo, Lee;Minah, Seo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.397-402
    • /
    • 2022
  • In this short review, we explore the recent progress in metal-based gas-sensing techniques. The strong interaction between the metal films and hydrogen gas can be considered to play a considerably important role in the gas-sensing technique. The physical and chemical reactions in Pd-Pd hydride systems were studied in terms of the phase transition and lattice expansion of the metals. Two types of represented detection, electrical and optical, were introduced and discussed along with their advantages.

Synthesis and properties of indole based chemosensor

  • Lee, Jun-Hee;Wang, Sheng;Yu, Hyung-Wook;Kim, Hyung-Joo;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.36-36
    • /
    • 2011
  • We synthesized new dye sensor based on indole compound. Through the UV-vis absorptions, we analyzed chemosensing properties to explain metal binding properties. The peak absorptions increased at 472 nm when added metal cations($Cd^{2+}$, $Cu^{2+}$, $Hg^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Ni^{2+}$ and $Cr^{3+}$) and gradually decreased the peak at 516 nm. Thus, this UV-Vis absorption behavior clearly showed the metal binding reaction. To measure energy level of used dye sensor, HOMO/LUMO energy value was calculated with cyclovaltagramm(CV) and using computational calculation method, in which we estimated the optimum structure of dye sensor. CV and computational calculation method, both compared to find suitable geometric structure. (with almost same energy values.) From the computational calculation, dye sensor has plane structure. So, Amine and ketone in the dye sensor faced each other and makes position to bind metal cations. In addition, these positions was supported pull-push electron system and generated MLCT process, when the dye sensor was bonded with the metal cations and resulted chemosensing properties. Through the electrochemical and computational calculation method analyze, we proposed the chemosensing principles that the dye sensor bind the metal cation between ketone and amine. Finally, the formation type of metal ion bindings was determined by Job's plot measurements.

  • PDF