• 제목/요약/키워드: Metal point

검색결과 1,070건 처리시간 0.033초

A comparative study on the bond strength of porcelain to the millingable Pd-Ag alloy

  • Hong, Jun-Tae;Shin, Soo-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권5호
    • /
    • pp.372-378
    • /
    • 2014
  • PURPOSE. The porcelain fused to gold has been widely used as a restoration both with the natural esthetics of the porcelain and durability and marginal fit of metal casting. However, recently, due to the continuous rise in the price of gold, an interest towards materials to replace gold alloy is getting higher. This study compared the bond strength of porcelain to millingable palladium-silver (Pd-Ag) alloy, with that of 3 conventionally used metal-ceramic alloys. MATERIALS AND METHODS. Four types of metal-ceramic alloys, castable nonprecious nickel-chrome alloy, castable precious metal alloys containing 83% and 32% of gold, and millingable Pd-Ag alloy were used to make metal specimens (n=40). And porcelain was applied on the center area of metal specimen. Three-point bending test was performed with universal testing machine. The bond strength data were analyzed with a one-way ANOVA and post hoc Scheffe's tests (${\alpha}=.05$). RESULTS. The 3-point bending test showed the strongest ($40.42{\pm}5.72$ MPa) metal-ceramic bond in the nonprecious Ni-Cr alloy, followed by millingable Pd-Ag alloy ($37.71{\pm}2.46$ MPa), precious metal alloy containing 83% of gold ($35.89{\pm}1.93$ MPa), and precious metal alloy containing 32% of gold ($34.59{\pm}2.63$ MPa). Nonprecious Ni-Cr alloy and precious metal alloy containing 32% of gold showed significant difference (P<.05). CONCLUSION. The type of metal-ceramic alloys affects the bond strength of porcelain. Every metal-ceramic alloy used in this study showed clinically applicable bond strength with porcelain (25 MPa).

금속체 표면파 통신 기술의 선내 적용 방안에 관한 고찰 (A Consideration on the Application of Metal Surface Wave Communication Technology in the Ships)

  • 공진우;김부영;심우성
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 추계학술대회
    • /
    • pp.135-136
    • /
    • 2023
  • 본 연구는 금속체 표면파 통신을 이용한 선내 통신 네트워크 구축을 위한 실증 결과이며, 이에 대한 선내 적용방안에 대한 고찰이다. 지난 3년간 5척의 선박을 대상으로 금속체 표면파 통신에 대한 적용 가능성을 확인하였으며, 소형 선박부터 중형선박까지 선내 밀폐 구역에 대한 표면파 통신의 실증을 통해 그 성능을 입증하였다. 통신방식은 IEEE 802.11 기반의 Wi-Fi 통신을 이용하여 무선신호를 표면파롤 전송하는 방식으로 진행하였으며, AP 기반의 데이터를 전송하고 AP - AP의 Point to Point 방식으로 전송속도를 측정하였으며, 표면파 통신이 도달되지 않은 구간은 중계기 AP를 추가하여 전송거리를 연장하는 방안으로 이용하였다. 총 5척의 선박을 통해 무선통신이 불가능한 구역에서 5~100Mbps의 전송속도를 도출함에 따라 선내 Back Bone network를 표면파 기반으로 이용하여 선내 중량 감소, 통신 케이블 구축에 따른 비용 절감이 가능할 것으로 사료된다.

  • PDF

ALGEBRAIC CORRECTION FOR METAL ARTIFACT REDUCTION IN COMPUTED TOMOGRAPHY

  • Jeon, Kiwan;Kang, Sung-Ho;Ahn, Chi Young;Kim, Sungwhan
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권2호
    • /
    • pp.157-166
    • /
    • 2014
  • If there are metals located in the X-ray scanned object, a point outside the metals has its range of projection angle at which projections passing through the point are disturbed by the metals. Roughly speaking, this implies that attenuation information at the point is missing in the blocked projection range. So conventional projection completion MAR algorithms to use the undisturbed projection data on the boundary of the metaltrace is less efficient in reconstructing the attenuation coefficient in detailed parts, in particular, near the metal region. In order to overcome this problem, we propose the algebraic correction technique (ACT) to utilize a pre-reconstructed interim image of the attenuation coefficient outside the metal region which is obtained by solving a linear system designed to reduce computational costs. The reconstructed interim image of the attenuation coefficient is used as prior information for MAR. Numerical simulations support that the proposed correction technique shows better performance than conventional inpainting techniques such as the total variation and the harmonic inpainting.

저온 브레이징용 Al-Si-Cu 합금의 Sn 첨가에 따른 융점 및 기계적 특성 변화 연구 (Effect of Tin Addition on the Melting Temperatures and Mechanical Properties of Al-Si-Cu Brazing Filler Metals)

  • 김민상;박천웅;변종민;김영도
    • 한국재료학회지
    • /
    • 제26권7호
    • /
    • pp.376-381
    • /
    • 2016
  • For the development of a low-melting point filler metal for brazing aluminum alloy, we analyzed change of melting point and wettability with addition of Sn into Al-20Cu-10Si filler metal. DSC results showed that the addition of 5 wt% Sn into the Al-20Cu-10Si filler metal caused its liquidus temperature to decrease by about 30 oC. In the wettability test, spread area of melted Al-Cu-Si-Sn alloy is increased through the addition of Sn from 1 to 5 wt%. For the measuring of the mechanical properties of the joint region, Al 3003 plate is brazed by Al-20Cu-10Si-5Sn filler metal and the mechanical property is measured by tensile test. The results showed that the tensile strength of the joint region is higher than the tensile strength of Al 3003. Thus, failure occurred in the Al 3003 plate.

피라미드 구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 특성평가 (Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure)

  • 정창균;윤석준;성대용;양동열;안동규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.483-486
    • /
    • 2004
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.

  • PDF

$Si_3N_4/SM45C$ 접합부의 응력해석 및 파괴특성 (Fracture Characteristics and Stress Analysis of $Si_3N_4/SM45C$ Joint)

  • 김기성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.248-253
    • /
    • 1998
  • Recently, the uses of Ceramic/metal bonded joints, resin/metal joints, adhesive joints, composite materials which are composed of dissimiliar materials have increased in various industry fields. Since the ceramic/metal bonded joints material is made at a high temperature, residual stress distributions due to differences in material properties were investigated by varying material parameters. The two dimensional finite element analysis was performed to study residual stress distribution in Si3N4/SM45C bonded joint with a copper interlayer between the silicon nitride(Si3N4) and the structural carbon steel(SM45C) and 4-point bending tests were carried out under room temperature. Fracture surface and crack propagation path were observed using scanning electron microscope and characteristics of its fracture was discussed.

  • PDF

Effects of Strain Rate and Temperature on Fracture Strength of Ceramic/Metal Joint Brazed with Ti-Ag-Cu Alloy

  • Seo, Do-Won;Lim, Jae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1078-1083
    • /
    • 2002
  • Ceramics are significantly used in many industrial applications due to their excellent mechanical and thermal properties such as high temperature strength, low density, high hardness, low thermal expansion, and good corrosion resistive properties, while their disadvantages are brittleness, poor formability and high manufacturing cost. To combine advantages of ceramics with those of metals, they are often used together as one composite component, which necessiates reliable joining methods between metal and ceramic. Direct brazing using an active filler metal has been found to be a reliable and simple technique, producing strong and reliable joints. In this study, the fracture characteristics of Si$_3$N$_4$ ceramic joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu (0.25-0.3 mm) interlayer are investigated as a function of strain rate and temperature. In order to evaluate a local strain a couple of strain gages are pasted at the ceramic and metal sides near joint interface. As a result the 4-point bending strength and the deflection of interlayer increased at room temperature with increasing strain rate. However bending strength decreased with temperature while deflection of interlayer was almost same. The fracture shapes were classified into three groups ; cracks grow into the metal-brazing filler line, the ceramic-brazing filler line or the ceramic inside.

초정밀 단일점 다이아몬드 터닝을 이용한 비구면 금속 부반사경 가공 (Ultra-precision single point diamond turning (SPDT) on an aspheric metal secondary mirror)

  • Kim, E. D.;H. S. Yang;Kim, G-H.
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2001년도 제12회 정기총회 및 01년도 동계학술발표회
    • /
    • pp.96-97
    • /
    • 2001
  • A 110 mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning (SPDT) . Without a conventional polishing process, the surface texture of R$\sub$a/=2.8 nm, and the form error of R$\sub$a/=0.05 λ has been stably achieved In a laboratory condition. (omitted)

  • PDF

대기 점오염원에서 배출되는 개별입자상물질의 물리화학적 특성 (Physico-chemical characterization of individual particles emitted from the air pollution point sources)

  • 박정호;서정민
    • 한국환경과학회지
    • /
    • 제14권8호
    • /
    • pp.761-770
    • /
    • 2005
  • Scanning electron microscopy / energy dispersive X-ray analyzer(SEM/EDX) has played an important role for evaluation the source of atmospheric particle because it is a powerful tool for characterizing individual particles. The SEM/EDX system provides various physical parameters like optical diameter, as well as chemical information for a particle-by-particle basis. The purpose of the study was to classify individual particle emitted from the point sources based on clustering analysis and physico-chemical analysis by SEM/EDX. The total of 490 individual particle were analyzed at 8 point sources including coal-fired power plant, incinerator, H-C oil boiler, and metal manufacturing industry. The main components were Si and AI in the coal-fired power plant, Cl and Na in the domestic waste Incinerator, S in the H-C oil boiler and S and Fe in the metal manufactory industry, respectively.