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ABSTRACT. If there are metals located in the X-ray scanned object, a point outside the metals
has its range of projection angle at which projections passing through the point are disturbed by
the metals. Roughly speaking, this implies that attenuation information at the point is missing
in the blocked projection range. So conventional projection completion MAR algorithms to use
the undisturbed projection data on the boundary of the metaltrace is less efficient in reconstruct-
ing the attenuation coefficient in detailed parts, in particular, near the metal region. In order to
overcome this problem, we propose the algebraic correctiontechnique (ACT) to utilize a pre-
reconstructed interim image of the attenuation coefficientoutside the metal region which is
obtained by solving a linear system designed to reduce computational costs. The reconstructed
interim image of the attenuation coefficient is used as priorinformation for MAR. Numeri-
cal simulations support that the proposed correction technique shows better performance than
conventional inpainting techniques such as the total variation and the harmonic inpainting.

1. INTRODUCTION

Computed Tomography (CT) is an imaging modality for providing 2-D and 3-D high-
resolution tomographic images of the scanned human body from measured X-ray projections.
Despite the controversy about the hazards associated with exposure to X-ray radiation, CT is
a powerful tool to investigate the interior of the human body, and has been widely used for
diagnostic and therapeutic purposes in various medical disciplines for decades. CT can pro-
vide high-resolution anatomic images in the absence of metallic objects such as dental fillings
or prosthesis in the scanning path, but on the other hand metallic objects implanted in the hu-
man body cause severe metal streak artifacts in CT images anddeteriorate reconstructed CT
image quality. Usually metals are strongly attenuating objects and the detectors sensing X-ray
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beam attenuated by metals undergo severe photon starvationand thus after-log projection data
become inaccurate.

Metal Artifact Reduction (MAR) to improve CT image quality is a hot issue of CT appli-
cations in clinical practice and several MAR algorithms have been proposed over past three
decades. Lewitt and Bates first developed a MAR image reconstruction method from incom-
plete projections, in which the projection measurements through metals were assumed to be
missing and were recovered by polynomial interpolation [1]. Besides linear and polynomial
interpolations [2–4], wavelet interpolation [5, 6], sinogram inpainting [7, 8], and normalized
MAR interpolation [9] techniques have been proposed in order to fill the missing projection
data. These MAR algorithms can be classified into the projection or sinogram completion
methods. During the last decade, iterative methods modeling the physics behind metal arti-
facts have established another class of MAR algorithms in which the noise [10, 11] and the
beam hardening [12, 13] were modeled. Compared to projection completion methods, model-
based iterative methods are computationally intensive andhave limitations in clinical applica-
tions [14]. Recently, the hybrid method combining the projection completion method with the
iterative method has been proposed [15,16].

In the projection completion method, the missing projections on the metal trace can be
filled up by continuing the flow of the uncorrupted projections adjacent to the metal trace in
the help of various inpainting algorithms such as interpolation and total variation. Inpainting
is the image processing technique of reconstructing lost ordeteriorated parts of images and
videos. For more details, see [17, 18]. These traditional methods to fill the gap of the missing
projections with the uncorrupted projections on the boundary of the metal trace in the sinogram
may distort the true attenuation coefficient outside metal objects.

Fig. 1 (a), (b) and (c) show a phantom model containing metalslocated on two white re-
gions, its sinogram and the sinogram region corresponding to a range of angle whose projec-
tions passing through the red point, as an example, in Fig. 1 (a) are blocked by the metal
region, respectively. The closer a point is to the metal region, the wider the range of angle,
in which projections passing through the point are disturbed by metals, is. Therefore the tra-
ditional filling methods may cause inaccurate information to projections passing through the
red spot. As a result, CT images reconstructed by the filteredback projection (FBP) method
from this corrected sinogram may be less efficient to recoverthe details of the true image of
the phantom model. The efficiency of the projection completion method has high dependence
of the accuracy of synthesized data.

In this paper we propose a new MAR algorithm which is called the algebraic correction
technique (ACT) using an interim image of the attenuation coefficient outside the metal region.
The attenuation coefficient is usually calculated from the measured projection data by FBP and
algebraic reconstruction technique(ART) basically proposed by Kaczmarz [19]. Since FBP
cannot be applied to incomplete data, we adopt ART which is expressed by a linear system
with relationship between the uncorrupted projections andimage values on rectangular grid.
Since the matrix of the linear system is quite large and severely under-determined, various it-
erative algorithms to solve the linear system have been developed at the cost of computational
time and memory [19–23]. In ACT, we deal with those limitations and improve the imaging
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FIGURE 1. (a) shows a phantom model containing two metals which are lo-
cated on white regions. (b) is its sinogram. Two blue and red curves indicate
the traces of projections passing through blue and red spotsin (a) located out-
side the metal regions. (c) shows the magnified image of the boxed region in
(b). Projections passing through the red point are blocked by the metals in a
range of projection angle. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)

quality efficiently by generating a linear system at coarse scale that are solved in relatively
short time by the least squares method equipped with Tikhonov regularization and reconstruct-
ing the corresponding low resolution interim image. The temporary image of the attenuation
coefficient is exploited as prior information for MAR. Assuming that the attenuation value is
identically zero on the metal region, we project the solution of the linear system into the metal
trace and interpolate synthesized projections on the metaltrace in order to replace the cor-
rupted projection data. The final image of the attenuation coefficient is hence obtained from
this surrogate sinogram by FBP.

This paper is organized as follows. In Section 2, we give a brief introduction to ARTs
and explain the proposed algebraic correction method ACT. In Section 3, numerical results
are provided to demonstrate ACT and we compare its performance with those of traditional
inpainting techniques including the total variation and the harmonic inpainting. Finally we
finish the paper with conclusion and future works.

2. METHOD

2.1. Algebraic Reconstruction Technique. Algebraic Reconstruction Technique (ART) can
be traced to an iterative technique introduced by S. Kaczmarz [19] and was first applied in CT
[20]. In ART, it is assumed that a certain reconstruction region, for instance rectangle or disk,
is known and the region completely contains the scanned object. The region is then discretized
with square grids and we obtain the following relationship between the measured projection
datap = (p1, p2, · · · , pM ) ∈ R

M and the unknown imagef = (f1, f2, · · · , fN ) ∈ R
N
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N
∑

j=1

wijfj = pi , i = 1, 2, · · · ,M (2.1)

whereM is the number of projections measurements,N is the number of grids, andwij is
the weighting factor which is equal to the fractional lengthor area of thej-th image pixel
intercepted by thei-th ray. Note that most of thewij ’s are zero since only a small number of
image pixels contribute to any projection and the matrixW = (wij) is sparse. An iterative
algorithm to solve the linear system (2.1) was basically proposed by S. Kaczmarz [19] which
can be expressed as

f (i) = f (i−1) −
< f (i−1),wi > −pi

< wi,wi >
wi, i = 1, 2, · · · ,M (2.2)

where< ·, · > is the dot product in the spaceRN , wi = (wi1, wi2, · · · , wiN ) ∈ R
N , andf (i)

is the orthogonal projection off (i−1) onto the hyperplane< f ,wi >= pi. The method (2.2) is
based on considering the solutionf as a point inRN which is the intersection of M hyperplanes.
The convergence of the above iterative algorithm was investigated by K. Tanabe [21].

However, sinceN is often much bigger thanM , the linear system (2.1) is severely underde-
termined. More worse, the projections obtained in CT often contain noise which would cause
p not to lie in the range of the operator W. Even if convergence is guaranteed, the method (2.2)
would then converge very slowly to the solution. So many other iterative algorithms have been
developed. Simultaneous Iterative Reconstructive Technique (SIRT, [22]) and Simultaneous
Algebraic Reconstructive Technique (SART, [23]) are variations of the Kaczmarz’s method.

2.2. Algebraic Correction Technique for MAR. Fig. 2 (a) shows a phantom model contain-
ing two metal regions implanted in white areas and several regions with different attenuation
values. Fig. 2 (b) shows the sinogram of the phantom model. FBP generates an image with
streak artifacts caused by a metal object as shown in Fig. 2 (c). Using a simple thresholding, we
can determine the metal region in the reconstructed image. Then we cut off the corrupted pro-
jections from the sinogram whose rays lie on the metal region. With the help of conventional
inpainting methods such as the total variation and harmonicinpainting methods, the missing
projections can be filled up so that FBP provides an improved image without streak artifacts
from the synthesized sinogram. Fig. 2 (d1) and (d2) are the sinogram filled by the harmonic
inpainting method and its FBP image, respectively. Fig. 2 (e1) and (e2) are the sinogram filled
by the total variation method and its FBP image, respectively.

Reconstructed images (d2) and (e2) are significantly improved compared with the recon-
structed image (c). However, it is difficult to distinguish two small disc regions, which are
originally located above the metal region, in (d2) and (e2).The reason is as follows. Letr0 be
a point in the disc regions, for instance, the red spot in Fig.1 (a). The red curve in Fig. 1 (b)
traces the projections whose rays pass through the pointr0. Fig. 1 (c), which is a magnified
one of the boxed region in Fig. 1 (b), shows the blind part of attenuation information of the red
point r0. In other words, the projection rays passing through the point r0 at projection angle
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from θ1 to θ2 are blocked by the metal objects and hence there is no projection containing at-
tenuation information atr0 on the range of angle[θ1, θ2]. So conventional filling of the missing
projections in the box using the neighboring uncorrupted data may ignore information on the
attenuation value at the pointr0, and hence CT images reconstructed by FBP from this ma-
nipulated sinogram are less efficient to recover the detailsof the true image of the attenuation
coefficient of the phantom model.

In this paper, we take a different approach to filling up the metal trace in the sinogram.
Instead of using the boundary projections of the metal trace, we exploit an interim image of the
attenuation coefficient reconstructed from incomplete projection data. LetM be the number
of measured projection data for all projection angles and let p = (p1, p2, · · · , pM ) ∈ R

M be
the measured projection data. We categorize the projections pk into two parts of corrupted and
uncorrupted ones. Letpt = (pt1 , · · · , ptm1

) ∈ R
m1 be the vector of uncorrupted projections

whose ray does not touch metal objects, and letps = (ps1 , · · · , psm2
) ∈ R

m2 be the vector
of corrupted projections whose ray passes through metal objects. Note thatm1 + m2 = M .
In many clinical practices, the measurement numberM is huge. Even though the corrupted
dataps is eliminated from the whole datap, m1 is still so big that applying the method (2.2)
encounters memory limitations and requires considerable computation time. So we use coarse
square gridsDi, i = 1, 2, · · · , N , with width δ bigger than the size of a detector and let
f = (f1, f2, · · · , fN ) ∈ R

N be the image vector. If the area of the intersection ofDi and
the metal region is bigger thanδ2/2, we suppose that the image valuefi is zero. Here there
are several ways to generate linear systems (2.1) with various size, but we want the size of
the generated linear system to be not big. So we propose to selectN uncorrupted projections
ptk from pt so that they are evenly distributed through components ofpt in index order. Let
p̃t ∈ R

N be a vector whose elements are the selected uncorrupted projectionsptk . Then we
have the matrix form of the linear system (2.1)

W f = p̃t (2.3)

Here, we emphasize that the weight matrixW is not so big that we apply the Kaczmarz’s
iterative method (2.2) or its variations such as SIRT and SART. So in order to solve (2.3), we
apply the well-known least squares method equipped with theTikhonov regularization defined
by

argmin
f

(

||W f − p̃t||
2
2 + α||f ||22

)

(2.4)

whereα is the regularization parameter. Then (2.4) has the unique solution

f =
(

W TW + αI
)−1

W T p̃t (2.5)

whereI ∈ R
N×N is the identity matrix.

Here note that the solutionf in (2.5) is a temporary image of the attenuation coefficient
on coarse gridsDi. We synthesize sporadic projection data from the imagef and interpolate
the synthesized projection data into the metal trace in the sinogram in order to replace the
corrupted dataps. Finally, we apply FBP in order to obtain the final reconstructed image from
this updated sinogram.
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3. RESULTS

3.1. Summary of the proposed method. Unlike the conventional inpainting methods to use
the boundary data of the metal trace in the sinogram, the proposed ACT exploits an interim
image of the attenuation coefficient as prior information for MAR. Briefly, the proposed method
is based on the following steps:

Step 1: Reconstruct an FBP image from the measured projection datap.

Step 2: Using a simple thresholding, find the image of the metal region in the recon-
structed image and cut off the metal trace from the sinogram.

Step 3: Decompose the vectorp into two vectorsps whose elements are projections cor-
rupted by metal objects andpt whose elements are uncorrupted projections outside the
metal trace.

Step 4: Discretize the phantom with coarse square gridsDi, i = 1, 2, · · · , N . Select
evenlyN uncorrupted projections frompt and letp̃t be the vector ofN selected pro-
jections.

Step 5: Find a solutionf defined in (2.5). If the area of the intersection ofDi and the
metal region is bigger than half of the area ofDi, we suppose that the image valuefi
is zero.

Step 6: Project the solutionf into the metal trace.

Step 7: Interpolate projected projections off on the metal trace in order to replaceps.

Step 8: Using FBP, reconstruct the final image from the updated sinogram.

3.2. Numerical Experiment. We use an attenuation coefficient distribution as depicted in
Fig. 2 (a). The image size is128 × 128. We set the infinitesimal rotation angle for the simu-
lated projection to1◦. The sinogram hence has the size of182 × 180 (Fig. 2 (b)). To obtain
the projection image and perform the FBP in the procedure, weuse an open source project,
called scikit-image [24], running on the python. Also, in order to solve the minimization prob-
lem (2.4), we use the numpy [25] which is a famous linear algebra library on the python. For
the acceleration of the linear solver in the numpy, we build the numpy with Intel MKL (math
kernel libraries) that enables to use all core of the Intel CPU. We test all numerical experiments
on 64-bit Ubuntu 12.04. LTS with Intel i7 CPU (3.4GHz, quad core) and 16GB memory.

Fig. 3 (a) shows the interim images obtained by solving the minimization problem (2.4) on
the coarse grid. Clearly, we see that the reconstruction result is less affected by metal artefact.
From the obtained images, we perform the forward projectionto get a prior information for the
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FIGURE 2. (a) Original image containing metal regions. (b) Sinogram of (a).
(c) FBP reconstructed image from the sinogram (b). (d1) Inpainted sinogram
using the harmonic inpainting. (d2) FBP reconstructed image from the sino-
gram (d1). (e1) Inpainted sinogram using the total variation. (e2) FBP recon-
structed image from the sinogram (e1). (f1) Sinogram using proposed correc-
tion method. (f2) FBP reconstruction image from the sinogram (f1).
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FIGURE 3. Description of correction procedure. (a) reconstructedimage on
coarse grid, (b) the sinogram of (a), (c) correction of sinogram on fine grid and
(d) correction of the remaining points in the metal trace region using harmonic
inpainting.

sinogram correction (See Fig. 3 (b)). Fig. 3 (c) presents thecorrection step using information
that the fine grid is twice of coarse one in scale. We put the projection data of the coarse grid on
even points of the fine grid in the metal trace region. Then, weapply the harmonic inpainting
to fill the remaining points in the metal trace region (See Fig. 3 (d)).

Fig. 2 (f2) is the final result by applying FBP to Fig. 2 (f1).
To verify the numerical experiment, we illustrate the 1-D profiles of reconstructed images.

Fig. 4 (a) illustrates zoomed-in images of the original, theproposed algorithm and the conven-
tional harmonic inpainting from top to bottom, respectively. The gray, red and blue lines of
Fig. 4 (b) mean the 1-D profile of the left images, respectively. Apparently, we see that the
proposed method can reconstruct the small inclusion regions defected by metal artefact.

4. CONCLUSION

We propounded a question about efficiency of existing inpainting algorithms for MAR to use
the boundary projections of the metal trace in the sinogram.In order to settle the limitation,
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FIGURE 4. Performance comparison of the proposed ACT and the MAR har-
monic inpainting algorithm through 1D profiles. (For interpretation of the
references to color in this figure, the reader is referred to the web version of
this article.)

we proposed the algebraic correction technique (ACT) to utilize an interim image of the atten-
uation coefficient outside the metal region which was obtained by solving a carefully designed
linear system. We demonstrated numerically that ACT improves image quality in detailed parts
compared with conventional inpainting methods such as the total variation and the harmonic
inpainting. This suggests its usefulness in medical diagnosis and other medical applications.

In ACT, it is an essential part to find a temporary image of the attenuation coefficient from
the incomplete projection data outside the metal trace. Using the temporary image, the missing
projections on the metal trace are calculated. To do so, we are forced to solve a linear system
with the incomplete projection data. In this paper, in the purpose of avoiding possible com-
putational cost in dealing with a large linear system, we generated a linear system defined on
coarse grids and solved it using the Tikhonov regularized least squares method. However, there
is not a study on design of a linear system and its inversion method to minimize computational
cost and maximize image quality. So future works should focus on optimization of ACT.
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