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ABSTRACT. If there are metals located in the X-ray scanned objectjra patside the metals
has its range of projection angle at which projections pastirough the point are disturbed by
the metals. Roughly speaking, this implies that attenaatiformation at the point is missing
in the blocked projection range. So conventional projectiompletion MAR algorithms to use
the undisturbed projection data on the boundary of the tnatal is less efficient in reconstruct-
ing the attenuation coefficient in detailed parts, in patéc, near the metal region. In order to
overcome this problem, we propose the algebraic corretdicdmique (ACT) to utilize a pre-
reconstructed interim image of the attenuation coefficmritide the metal region which is
obtained by solving a linear system designed to reduce ctatipoal costs. The reconstructed
interim image of the attenuation coefficient is used as gritarmation for MAR. Numeri-
cal simulations support that the proposed correction fgcienshows better performance than
conventional inpainting techniques such as the total tiari@and the harmonic inpainting.

1. INTRODUCTION

Computed Tomography (CT) is an imaging modality for prawigdi2-D and 3-D high-
resolution tomographic images of the scanned human body fineasured X-ray projections.
Despite the controversy about the hazards associated witieere to X-ray radiation, CT is
a powerful tool to investigate the interior of the human hoalyd has been widely used for
diagnostic and therapeutic purposes in various medicalptiises for decades. CT can pro-
vide high-resolution anatomic images in the absence oflhwetdjects such as dental fillings
or prosthesis in the scanning path, but on the other handlimetidjects implanted in the hu-
man body cause severe metal streak artifacts in CT imagedetadorate reconstructed CT
image quality. Usually metals are strongly attenuatingeotsj and the detectors sensing X-ray
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beam attenuated by metals undergo severe photon stareatibtinus after-log projection data
become inaccurate.

Metal Artifact Reduction (MAR) to improve CT image quality & hot issue of CT appli-
cations in clinical practice and several MAR algorithms énéeen proposed over past three
decades. Lewitt and Bates first developed a MAR image reaatigtn method from incom-
plete projections, in which the projection measurementsuiih metals were assumed to be
missing and were recovered by polynomial interpolation Rgsides linear and polynomial
interpolations [2—4], wavelet interpolation [5, 6], simam inpainting [7, 8], and normalized
MAR interpolation [9] techniques have been proposed in otddill the missing projection
data. These MAR algorithms can be classified into the priojeatr sinogram completion
methods. During the last decade, iterative methods maglétie physics behind metal arti-
facts have established another class of MAR algorithms irchwvthe noise [10, 11] and the
beam hardening [12, 13] were modeled. Compared to projectonpletion methods, model-
based iterative methods are computationally intensivehane limitations in clinical applica-
tions [14]. Recently, the hybrid method combining the pttfn completion method with the
iterative method has been proposed [15, 16].

In the projection completion method, the missing projettion the metal trace can be
filled up by continuing the flow of the uncorrupted projecscadjacent to the metal trace in
the help of various inpainting algorithms such as interp@faand total variation. Inpainting
is the image processing technique of reconstructing losteteriorated parts of images and
videos. For more details, see [17, 18]. These traditionahouss to fill the gap of the missing
projections with the uncorrupted projections on the bomndéathe metal trace in the sinogram
may distort the true attenuation coefficient outside met@ais.

Fig. 1 (a), (b) and (c) show a phantom model containing métalsted on two white re-
gions, its sinogram and the sinogram region correspondirggrange of angle whose projec-
tions passing through the red point, as an example, in Figa) are blocked by the metal
region, respectively. The closer a point is to the metalaegthe wider the range of angle,
in which projections passing through the point are distdrbg metals, is. Therefore the tra-
ditional filling methods may cause inaccurate informatiorptojections passing through the
red spot. As a result, CT images reconstructed by the filtbestt projection (FBP) method
from this corrected sinogram may be less efficient to rectiverdetails of the true image of
the phantom model. The efficiency of the projection comgiethethod has high dependence
of the accuracy of synthesized data.

In this paper we propose a new MAR algorithm which is callegl difgebraic correction
technique (ACT) using an interim image of the attenuatiogffoacient outside the metal region.
The attenuation coefficient is usually calculated from tleasured projection data by FBP and
algebraic reconstruction technique(ART) basically psgabby Kaczmarz [19]. Since FBP
cannot be applied to incomplete data, we adopt ART which Bessed by a linear system
with relationship between the uncorrupted projections iamehe values on rectangular grid.
Since the matrix of the linear system is quite large and styemder-determined, various it-
erative algorithms to solve the linear system have beenoja»e at the cost of computational
time and memory [19-23]. In ACT, we deal with those limitasoand improve the imaging
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FIGURE 1. (a) shows a phantom model containing two metals whichare |
cated on white regions. (b) is its sinogram. Two blue and rgtes indicate
the traces of projections passing through blue and red gp¢s$ located out-
side the metal regions. (c) shows the magnified image of tRedcegion in
(b). Projections passing through the red point are blockethé metals in a
range of projection angle. (For interpretation of the refices to color in this
figure, the reader is referred to the web version of thislatjic

quality efficiently by generating a linear system at coarssesthat are solved in relatively
short time by the least squares method equipped with Tikhocggularization and reconstruct-
ing the corresponding low resolution interim image. Thegerary image of the attenuation
coefficient is exploited as prior information for MAR. Assing that the attenuation value is
identically zero on the metal region, we project the solutibthe linear system into the metal
trace and interpolate synthesized projections on the nireted in order to replace the cor-
rupted projection data. The final image of the attenuaticeffimdent is hence obtained from
this surrogate sinogram by FBP.

This paper is organized as follows. In Section 2, we give afbrtroduction to ARTs
and explain the proposed algebraic correction method A@TBdction 3, numerical results
are provided to demonstrate ACT and we compare its perfaeaith those of traditional
inpainting techniques including the total variation and trarmonic inpainting. Finally we
finish the paper with conclusion and future works.

2. METHOD

2.1. Algebraic Reconstruction Technique. Algebraic Reconstruction Technique (ART) can
be traced to an iterative technique introduced by S. Kacziii® and was first applied in CT

[20]. In ART, it is assumed that a certain reconstructioriaegfor instance rectangle or disk,

is known and the region completely contains the scanneatblijée region is then discretized
with square grids and we obtain the following relationshgivieen the measured projection
datap = (p1,p2, - ,pum) € RM and the unknown image= (f1, fo, -, fn) € RY
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N
7=1

where M is the number of projections measurememn{sjs the number of grids, ana;; is
the weighting factor which is equal to the fractional lengtharea of thej-th image pixel
intercepted by thé-th ray. Note that most of the;;’s are zero since only a small number of
image pixels contribute to any projection and the maliix= (w;;) is sparse. An iterative
algorithm to solve the linear system (2.1) was basicallyppsed by S. Kaczmarz [19] which
can be expressed as

0 _ gy <fTDwi > —p,
< W, W; >

where< -,- > is the dot product in the spa@®", w; = (w;1, wjo, - ,w;n) € RY, andf®)

is the orthogonal projection df*~1) onto the hyperplane: f, w; >= p;. The method (2.2) is

based on considering the solutibas a point iR which is the intersection of M hyperplanes.

The convergence of the above iterative algorithm was iiyetstd by K. Tanabe [21].

However, sinceV is often much bigger than/, the linear system (2.1) is severely underde-
termined. More worse, the projections obtained in CT oftemta&in noise which would cause
p nhot to lie in the range of the operator W. Even if convergesaguiaranteed, the method (2.2)
would then converge very slowly to the solution. So many otteeative algorithms have been
developed. Simultaneous Iterative Reconstructive Tegn(SIRT, [22]) and Simultaneous
Algebraic Reconstructive Technique (SART, [23]) are #oizs of the Kaczmarz's method.

f

wi, =12 M (2.2)

2.2. Algebraic Correction Techniquefor MAR. Fig. 2 (a) shows a phantom model contain-
ing two metal regions implanted in white areas and sevegabns with different attenuation
values. Fig. 2 (b) shows the sinogram of the phantom modeP §&herates an image with
streak artifacts caused by a metal object as shown in Fig. 2/&ng a simple thresholding, we
can determine the metal region in the reconstructed imalgen We cut off the corrupted pro-
jections from the sinogram whose rays lie on the metal regiith the help of conventional
inpainting methods such as the total variation and harmimpiainting methods, the missing
projections can be filled up so that FBP provides an improweage without streak artifacts
from the synthesized sinogram. Fig. 2 (d1) and (d2) are tmegsam filled by the harmonic
inpainting method and its FBP image, respectively. Fig.1d éad (e2) are the sinogram filled
by the total variation method and its FBP image, respegtivel

Reconstructed images (d2) and (e2) are significantly imggaompared with the recon-
structed image (c). However, it is difficult to distinguisiiat small disc regions, which are
originally located above the metal region, in (d2) and (82)e reason is as follows. Leg be
a point in the disc regions, for instance, the red spot in Ei¢p). The red curve in Fig. 1 (b)
traces the projections whose rays pass through the pgirfeig. 1 (c), which is a magnified
one of the boxed region in Fig. 1 (b), shows the blind part tfratation information of the red
point rg. In other words, the projection rays passing through thatpgi at projection angle
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from 6, to A, are blocked by the metal objects and hence there is no pajembntaining at-
tenuation information at, on the range of angl@, 6>]. So conventional filling of the missing
projections in the box using the neighboring uncorrupteté daay ignore information on the
attenuation value at the poing, and hence CT images reconstructed by FBP from this ma-
nipulated sinogram are less efficient to recover the dethilke true image of the attenuation
coefficient of the phantom model.

In this paper, we take a different approach to filling up theah#ace in the sinogram.
Instead of using the boundary projections of the metal tnaeeexploit an interim image of the
attenuation coefficient reconstructed from incompletggution data. LetV be the number
of measured projection data for all projection angles ahgle- (p1,ps,--- ,par) € RM be
the measured projection data. We categorize the projegtipimto two parts of corrupted and
uncorrupted ones. La; = (py,,- - ,ptml) € R™ be the vector of uncorrupted projections
whose ray does not touch metal objects, andlet= (ps,, - ,ps,,,) € R™? be the vector
of corrupted projections whose ray passes through metattshj Note thatn; + mo = M.

In many clinical practices, the measurement numhkis huge. Even though the corrupted
datap; is eliminated from the whole dafa, m; is still so big that applying the method (2.2)
encounters memory limitations and requires consideratiepatation time. So we use coarse
square gridsD;, ¢ = 1,2,---, N, with width ¢ bigger than the size of a detector and let
f = (f1, f2,--, fn) € RY be the image vector. If the area of the intersectionDgfand
the metal region is bigger thai? /2, we suppose that the image valfieis zero. Here there
are several ways to generate linear systems (2.1) withususze, but we want the size of
the generated linear system to be not big. So we proposedoct $éluncorrupted projections
pt,, from p; so that they are evenly distributed through componengs; af index order. Let
p: € RY be a vector whose elements are the selected uncorruptegtioosp;, . Then we
have the matrix form of the linear system (2.1)

Wt = py (2.3)

Here, we emphasize that the weight malffikis not so big that we apply the Kaczmarz's
iterative method (2.2) or its variations such as SIRT and AR in order to solve (2.3), we
apply the well-known least squares method equipped witfTitklsonov regularization defined
by

. =112 2
argfmm(HWf—pt\b+aHsz) (2.4)

where« is the regularization parameter. Then (2.4) has the uniglugien
£=(WTW +al)” WTp, (2.5)

wherel € RV*Y is the identity matrix.

Here note that the solutiofiin (2.5) is a temporary image of the attenuation coefficient
on coarse grid9);. We synthesize sporadic projection data from the im@agad interpolate
the synthesized projection data into the metal trace in ithegsam in order to replace the
corrupted datg,. Finally, we apply FBP in order to obtain the final reconsteddmage from
this updated sinogram.
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3. RESULTS

3.1. Summary of the proposed method. Unlike the conventional inpainting methods to use
the boundary data of the metal trace in the sinogram, theogemp ACT exploits an interim
image of the attenuation coefficient as prior informationMAR. Briefly, the proposed method
is based on the following steps:

Step 1: Reconstruct an FBP image from the measured projectionpdata

Step 2: Using a simple thresholding, find the image of the metal regmothe recon-
structed image and cut off the metal trace from the sinogram.

Step 3: Decompose the vectgrinto two vectorgp, whose elements are projections cor-
rupted by metal objects angl whose elements are uncorrupted projections outside the
metal trace.

Step 4. Discretize the phantom with coarse square giigis: = 1,2,--- ,N. Select
evenly N uncorrupted projections from; and letp; be the vector ofV selected pro-
jections.

Step 5: Find a solutionf defined in (2.5). If the area of the intersectioniof and the
metal region is bigger than half of the arealdf, we suppose that the image valfie
is zero.

Step 6: Project the solutioif into the metal trace.
Step 7. Interpolate projected projections Hbn the metal trace in order to replape.

Step 8: Using FBP, reconstruct the final image from the updated samg

3.2. Numerical Experiment. We use an attenuation coefficient distribution as depicted i
Fig. 2 (a). The image size I8 x 128. We set the infinitesimal rotation angle for the simu-
lated projection ta°. The sinogram hence has the sizel®? x 180 (Fig. 2 (b)). To obtain
the projection image and perform the FBP in the procedureuseean open source project,
called scikit-image [24], running on the python. Also, imer to solve the minimization prob-
lem (2.4), we use the numpy [25] which is a famous linear atgdibrary on the python. For
the acceleration of the linear solver in the numpy, we buikel niumpy with Intel MKL (math
kernel libraries) that enables to use all core of the IntdUCRle test all numerical experiments
on 64-bit Ubuntu 12.04. LTS with Intel i7 CPU (3.4GHz, quade)cand 16GB memaory.

Fig. 3 (a) shows the interim images obtained by solving th@mikzation problem (2.4) on
the coarse grid. Clearly, we see that the reconstructiantrsdess affected by metal artefact.
From the obtained images, we perform the forward projedtiayet a prior information for the
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FIGURE 2. (a) Original image containing metal regions. (b) Sinogia (a).
(c) FBP reconstructed image from the sinogram (b). (d1)iiipe sinogram
using the harmonic inpainting. (d2) FBP reconstructed enagm the sino-
gram (d1). (el) Inpainted sinogram using the total vanmti@2) FBP recon-
structed image from the sinogram (el). (f1) Sinogram usiog@sed correc-
tion method. (f2) FBP reconstruction image from the sinoy(tL).
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FIGURE 3. Description of correction procedure. (a) reconstrudtealge on
coarse grid, (b) the sinogram of (a), (c) correction of smagon fine grid and
(d) correction of the remaining points in the metal traceaegising harmonic
inpainting.

sinogram correction (See Fig. 3 (b)). Fig. 3 (c) presentstireection step using information
that the fine grid is twice of coarse one in scale. We put thgeption data of the coarse grid on
even points of the fine grid in the metal trace region. Thenap@y the harmonic inpainting
to fill the remaining points in the metal trace region (See Bi)).

Fig. 2 (f2) is the final result by applying FBP to Fig. 2 (f1).

To verify the numerical experiment, we illustrate the 1-Dffles of reconstructed images.
Fig. 4 (a) illustrates zoomed-in images of the original, pheposed algorithm and the conven-
tional harmonic inpainting from top to bottom, respectwelhe gray, red and blue lines of
Fig. 4 (b) mean the 1-D profile of the left images, respedgfivéipparently, we see that the
proposed method can reconstruct the small inclusion regiefected by metal artefact.

4. CONCLUSION

We propounded a question about efficiency of existing irpairalgorithms for MAR to use
the boundary projections of the metal trace in the sinogramorder to settle the limitation,
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FIGURE 4. Performance comparison of the proposed ACT and the MAR har
monic inpainting algorithm through 1D profiles. (For intefation of the
references to color in this figure, the reader is referredh¢ovteb version of
this article.)

we proposed the algebraic correction technique (ACT) lzatan interim image of the atten-
uation coefficient outside the metal region which was oletdiby solving a carefully designed
linear system. We demonstrated numerically that ACT imgsdmage quality in detailed parts
compared with conventional inpainting methods such asdta variation and the harmonic
inpainting. This suggests its usefulness in medical disignand other medical applications.

In ACT, it is an essential part to find a temporary image of ttterauation coefficient from
the incomplete projection data outside the metal tracendJsie temporary image, the missing
projections on the metal trace are calculated. To do so, eéoaced to solve a linear system
with the incomplete projection data. In this paper, in theppse of avoiding possible com-
putational cost in dealing with a large linear system, weegated a linear system defined on
coarse grids and solved it using the Tikhonov regularizedtlsquares method. However, there
is not a study on design of a linear system and its inversiothodeto minimize computational
cost and maximize image quality. So future works should $amu optimization of ACT.
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