DOI QR코드

DOI QR Code

A comparative study on the bond strength of porcelain to the millingable Pd-Ag alloy

  • Hong, Jun-Tae (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Shin, Soo-Yeon (Department of Prosthodontics, College of Dentistry, Dankook University)
  • Received : 2014.02.03
  • Accepted : 2014.05.20
  • Published : 2014.10.31

Abstract

PURPOSE. The porcelain fused to gold has been widely used as a restoration both with the natural esthetics of the porcelain and durability and marginal fit of metal casting. However, recently, due to the continuous rise in the price of gold, an interest towards materials to replace gold alloy is getting higher. This study compared the bond strength of porcelain to millingable palladium-silver (Pd-Ag) alloy, with that of 3 conventionally used metal-ceramic alloys. MATERIALS AND METHODS. Four types of metal-ceramic alloys, castable nonprecious nickel-chrome alloy, castable precious metal alloys containing 83% and 32% of gold, and millingable Pd-Ag alloy were used to make metal specimens (n=40). And porcelain was applied on the center area of metal specimen. Three-point bending test was performed with universal testing machine. The bond strength data were analyzed with a one-way ANOVA and post hoc Scheffe's tests (${\alpha}=.05$). RESULTS. The 3-point bending test showed the strongest ($40.42{\pm}5.72$ MPa) metal-ceramic bond in the nonprecious Ni-Cr alloy, followed by millingable Pd-Ag alloy ($37.71{\pm}2.46$ MPa), precious metal alloy containing 83% of gold ($35.89{\pm}1.93$ MPa), and precious metal alloy containing 32% of gold ($34.59{\pm}2.63$ MPa). Nonprecious Ni-Cr alloy and precious metal alloy containing 32% of gold showed significant difference (P<.05). CONCLUSION. The type of metal-ceramic alloys affects the bond strength of porcelain. Every metal-ceramic alloy used in this study showed clinically applicable bond strength with porcelain (25 MPa).

Keywords

References

  1. Brecker SC. Porcelain baked to gold-A new medium in prosthodontics. J Prosthet Dent 1956;6:801-10. https://doi.org/10.1016/0022-3913(56)90077-4
  2. Bagby M, Marshall SJ, Marshall GW Jr. Metal ceramic compatibility: a review of the literature. J Prosthet Dent 1990;63: 21-5. https://doi.org/10.1016/0022-3913(90)90259-F
  3. Kim CM, Lee JH, Cho IH. A study on the bond strength of non-precious alloys used for the porcelain fused to metal crown. J Dent Rehab App Sci 2006;22:203-10.
  4. Kim I, Yang HS. A study on the bond strength between reused dental alloys and porcelain. J Korean Acad Prosthodont 1993;31:181-90.
  5. do Prado RA, Panzeri H, Fernandes Neto AJ, das Neves FD, da Silva MR, Mendonca G. Shear bond strength of dental porcelains to nickel-chromium alloys. Braz Dent J 2005;16: 202-6. https://doi.org/10.1590/S0103-64402005000300006
  6. Moffa JP, Lugassy AA, Guckes AD, Gettleman L. An evaluation of nonprecious alloys for use with porcelain veneers. Part I. Physical properties. J Prosthet Dent 1973;30:424-31. https://doi.org/10.1016/0022-3913(73)90164-9
  7. Kelly JR, Rose TC. Nonprecious alloys for use in fixed prosthodontics: a literature review. J Prosthet Dent 1983;49: 363-70. https://doi.org/10.1016/0022-3913(83)90279-2
  8. Morris HF. Veterans Administration Cooperative Studies Project No. 147. Part IV: Biocompatibility of base metal alloys. J Prosthet Dent 1987;58:1-5. https://doi.org/10.1016/S0022-3913(87)80132-4
  9. Spear F, Holloway J. Which all-ceramic system is optimal for anterior esthetics? J Am Dent Assoc 2008;139:19S-24S.
  10. Magne P, Magne M, Belser U. The esthetic width in fixed prosthodontics. J Prosthodont 1999;8:106-18. https://doi.org/10.1111/j.1532-849X.1999.tb00019.x
  11. O'Boyle KH, Norling BK, Cagna DR, Phoenix RD. An investigation of new metal framework design for metal ceramic restorations. J Prosthet Dent 1997;78:295-301. https://doi.org/10.1016/S0022-3913(97)70029-5
  12. Stappert CF, Dai M, Chitmongkolsuk S, Gerds T, Strub JR. Marginal adaptation of three-unit fixed partial dentures constructed from pressed ceramic systems. Br Dent J 2004;196: 766-70. https://doi.org/10.1038/sj.bdj.4811390
  13. Campbell SD, Sozio RB. Evaluation of the fit and strength of an all-ceramic fixed partial denture. J Prosthet Dent 1988; 59:301-6. https://doi.org/10.1016/0022-3913(88)90177-1
  14. Kelly JR, Tesk JA, Sorensen JA. Failure of all-ceramic fixed partial dentures in vitro and in vivo: analysis and modeling. J Dent Res 1995;74:1253-8. https://doi.org/10.1177/00220345950740060301
  15. Zervas PJ, Papazoglou E, Beck FM, Carr AB. Distortion of three-unit implant frameworks during casting, soldering, and simulated porcelain firings. J Prosthodont 1999;8:171-9. https://doi.org/10.1111/j.1532-849X.1999.tb00032.x
  16. Katsoulis J, Mericske-Stern R, Rotkina L, Zbaren C, Enkling N, Blatz MB. Precision of fit of implant-supported screw-re-tained 10-unit computer-aided-designed and computer-aidedmanufactured frameworks made from zirconium dioxide and titanium: an in vitro study. Clin Oral Implants Res 2014;25: 165-74.
  17. Gilbert JL, Covey DA, Lautenschlager EP. Bond characteristics of porcelain fused to milled titanium. Dent Mater 1994; 10:134-40. https://doi.org/10.1016/0109-5641(94)90054-X
  18. Reich S, Wichmann M, Nkenke E, Proeschel P. Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. Eur J Oral Sci 2005;113: 174-9. https://doi.org/10.1111/j.1600-0722.2004.00197.x
  19. Bachhav VC, Aras MA. Zirconia-based fixed partial dentures: a clinical review. Quintessence Int 2011;42:173-82.
  20. Huget EF, Civjan S. Status report on palladium-silver-based crown and bridge alloys. J Am Dent Assoc 1974;89:383-5. https://doi.org/10.14219/jada.archive.1974.0426
  21. Goodacre CJ. Palladium-silver alloys: a review of the literature. J Prosthet Dent 1989;62:34-7. https://doi.org/10.1016/0022-3913(89)90043-7
  22. Kansu G, Aydin AK. Evaluation of the biocompatibility of various dental alloys: Part I-Toxic potentials. Eur J Prosthodont Restor Dent 1996;4:129-36.
  23. International Organization for Standardization. ISO 9693: metal-ceramic dental restorative systems; 2012.
  24. Knap FJ, Ryge G. Study of bond strength of dental porcelain fused to metal. J Dent Res 1966;45:1047-51. https://doi.org/10.1177/00220345660450040501
  25. Silver M, Klein G, Howard MC. An evaluation and comparison of porcelain-fused-to-cast metals. J Prosthet Dent 1960; 10:1055-64. https://doi.org/10.1016/0022-3913(60)90215-8
  26. Ozcan M. Fracture reasons in ceramic-fused-to-metal restorations. J Oral Rehabil. 2003;30:265-9. https://doi.org/10.1046/j.1365-2842.2003.01038.x
  27. Fairhurst CW, Anusavice KJ, Ringle RD, Twiggs SW. Porcelain-metal thermal compatibility. J Dent Res 1981;60: 815-9. https://doi.org/10.1177/00220345810600040801
  28. Shell JS, Nielsen JP. Study of the bond between gold alloys and porcelain. J Dent Res 1962;41:1424-37. https://doi.org/10.1177/00220345620410062101
  29. de Melo RM, Travassos AC, Neisser MP. Shear bond strengths of a ceramic system to alternative metal alloys. J Prosthet Dent 2005;93:64-9. https://doi.org/10.1016/j.prosdent.2004.10.017
  30. Mackert JR Jr, Ringle RD, Parry EE, Evans AL, Fairhurst CW. The relationship between oxide adherence and porcelain- metal bonding. J Dent Res 1988;67:474-8. https://doi.org/10.1177/00220345880670020801
  31. McLean JW. The metal-ceramic restoration. Dent Clin North Am 1983;27:747-61.
  32. Barghi N, McKeehan-Whitmer M, Aranda R. Comparison of fracture strength of porcelain-veneered-to-high noble and base metal alloys. J Prosthet Dent 1987;57:23-6. https://doi.org/10.1016/0022-3913(87)90110-7
  33. Lee EH, Jeon YC, Jeong CM, Lim JS. Effect of degassing condition on ceramic bond strength of Ni-Cr alloys. J Korean Acad Prosthodont 2000;38:461-71.
  34. Jochen DG, Caputo AA, Matyas J. Effect of metal surface treatment on ceramic bond strength. J Prosthet Dent 1986; 55:186-8. https://doi.org/10.1016/0022-3913(86)90339-2
  35. Kulunk T, Kurt M, Ural C, Kulunk S, Baba S. Effect of different air-abrasion particles on metal-ceramic bond strength. J Dent Sci 2011;6:140-6. https://doi.org/10.1016/j.jds.2011.05.003
  36. Anusavice KJ, Dehoff PH, Fairhurst CW. Comparative evaluation of ceramic-metal bond tests using finite element stress analysis. J Dent Res 1980;59:608-13. https://doi.org/10.1177/00220345800590030901
  37. Lenz J, Schwarz S, Schwickerath H, Sperner F, Schafer A. Bond strength of metal-ceramic systems in three-point flexure bond test. J Appl Biomater 1995;6:55-64. https://doi.org/10.1002/jab.770060108
  38. Papazoglou E, Brantley WA. Porcelain adherence vs force to failure for palladium-gallium alloys: a critique of metal-ceramic bond testing. Dent Mater 1998;14:112-9. https://doi.org/10.1016/S0109-5641(98)00017-7
  39. Hammad IA, Talic YF. Designs of bond strength tests for metal-ceramic complexes: review of the literature. J Prosthet Dent 1996;75:602-8. https://doi.org/10.1016/S0022-3913(96)90244-9
  40. Barghi N, Lorenzana RE. Optimum thickness of opaque and body porcelain. J Prosthet Dent 1982;48:429-31. https://doi.org/10.1016/0022-3913(82)90080-4
  41. Warpeha WS Jr, Goodkind RJ. Design and technique variables affecting fracture resistance of metal-ceramic restorations. J Prosthet Dent 1976;35:291-8. https://doi.org/10.1016/0022-3913(76)90253-5
  42. Lahori M, Nagrath R, Sisodia S, Dagar P. The effect of surface treatments on the bond strength of a nonprecious alloyceramic interface: an invitro study. J Indian Prosthodont Soc 2014;14:151-5. https://doi.org/10.1007/s13191-013-0285-3
  43. Li BH, Ye JT, Liao JK, Zhuang PL, Zhang YP, Li JY. Effect of pretreatments on the metal-ceramic bonding strength of a Pd-Ag alloy. J Dent 2014;42:319-28. https://doi.org/10.1016/j.jdent.2013.11.020
  44. Gilbert JL, Covey DA, Lautenschlager EP. Bond characteristics of porcelain fused to milled titanium. Dent Mater 1994; 10:134-40. https://doi.org/10.1016/0109-5641(94)90054-X
  45. Anusavice KJ, Dehoff PH, Gray A, Lee RB. Delayed crack development in porcelain due to incompatibility stress. J Dent Res 1988;67:1086-91. https://doi.org/10.1177/00220345880670080501
  46. Rosenstiel SF, Land MF, Fujimoto J. Contemporary fixed prosthodontics. 4th ed, St. Louis, Mo: Mosby Elsevier. 2006. p. 743-50.

Cited by

  1. Clinical evaluations of cast gold alloy, machinable zirconia, and semiprecious alloy crowns: A multicenter study vol.115, pp.6, 2014, https://doi.org/10.1016/j.prosdent.2015.10.018
  2. Comparison of bond strength of two porcelains and two base metal alloys in metal-ceramic restorations vol.16, pp.5, 2014, https://doi.org/10.4103/1735-3327.266094
  3. Comparative clinical study of the marginal discrepancy of fixed dental prosthesis fabricated by the milling-sintering method using a presintered alloy vol.11, pp.5, 2019, https://doi.org/10.4047/jap.2019.11.5.280
  4. Does Simulated Porcelain Firing Influence Corrosion Properties of Casted and Sintered CoCr Alloys? vol.14, pp.15, 2014, https://doi.org/10.3390/ma14154147
  5. Effect of multiple firings on the shear bond strength of presintered cobalt-chromium alloy and veneering ceramic vol.126, pp.6, 2021, https://doi.org/10.1016/j.prosdent.2021.09.021