• 제목/요약/키워드: Metal oxide addition

검색결과 298건 처리시간 0.035초

Enhancing Gas Response Characteristics of Mixed Metal Oxide Gas Sensors

  • Balamurugan, Chandran;Song, Sun-Ju;Kim, Ho-Sung
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.1-20
    • /
    • 2018
  • Semiconducting nanomaterials have attracted considerable interest in recent years due to their high sensitivity, selectivity, and fast response time. In addition, for portable applications, they have low power consumption, lightweight, simple in operation, a low maintenance cost. Furthermore, it is easy to manufacture microelectronic sensor structures with metallic oxide sensitive thin layers. The use of semiconducting metal oxides to develop highly sensitive chemiresistive sensing systems remains an important scientific challenge in the field of gas sensing. According to the sensing mechanisms of gas sensors, the overall sensor conductance is determined by surface reactions and the charge transfer processes between the adsorbed species and the sensing material. The primary goal of the present study is to explore the possibility of using semiconducting mixed metal oxide nanostructure as a potential sensor material for selective gases.

산화주석 첨가에 따른 동화유약의 발색 변화 (Color variation of copper glaze with the addition of tin oxide)

  • 노형구;김수민;김응수;조우석
    • 한국결정성장학회지
    • /
    • 제27권5호
    • /
    • pp.243-248
    • /
    • 2017
  • 본 연구에서는 산화주석(IV) 첨가량을 달리하여 동화유약 시편을 제조하고 발색기구를 분석하기 위하여 분광 분석, 결정상 분석, 미세구조 분석을 실시하여 색상과의 상관성을 분석하였다. 산화주석(VI) 첨가량이 증가함에 따라 동화유약의 붉은색은 사라지고 CIEab 값이 감소하여 무채색으로 발색하였다. 산화주석은 유약층에 고르게 분포하여 Cu nuclei가 성장하여 붉은색으로 발색하는 것을 방해하고 기포 주변의 metal Cu와 반응하여 합금을 형성하였다. 이로 인해 산화주석 첨가량이 증가함에 따라 금속 Cu 피크는 사라지고 미세한 $Cu_2O$ 피크만 남게 된다. 산화주석을 3.79 % 첨가하였을 때는 유약에 붉은색을 내는 $Cu_2O$보다 검정색을 나타내는 CuO와 Cassiterite $SnO_2$가 색상에 더 영향을 미치는 것으로 보여진다.

산화물 반도체를 이용한 최신 호기센서 기술 동향 (Recent Developments in Metal Oxide Gas Sensors for Breath Analysis)

  • 윤지욱;이종흔
    • 세라미스트
    • /
    • 제22권1호
    • /
    • pp.70-81
    • /
    • 2019
  • Breath analysis is rapidly evolving as a non-invasive disease recognition and diagnosis method. Metal oxide gas sensors are one of the most ideal platforms for realizing portable, hand-held breath analysis devices in the near future. This paper reviewed the recent developments in metal oxide gas sensors detecting exhaled biomarker gases such as nitric oxides, acetone, ammonia, hydrogen sulfide, and hydrocarbons. Emphasis was placed on strategies to tailor sensing materials/films capable of highly selective and sensitive detection of biomarker gases with negligible cross-response to ethanol, the major interfering breath gas. Specific examples were given to highlight the validity of the strategies, which include optimization of sensing temperature, doping additives, utilizing acid-base interaction, loading catalysts, and controlling gas reforming reaction. In addition, we briefly discussed the design and optimization method of gas sensor arrays for implementing the simultaneous assessment of multiple diseases. Breath analysis using high-performance metal oxide gas sensors/arrays will open new roads for point-of-care diagnosis of diseases such as asthma, diabetes, kidney dysfunction, halitosis, and lung cancer.

2단계 열화학 메탄 개질을 위한 Cu/Fe/Zr-혼합 산화물 매체 내 Cu 첨가 효과 (Effect of Cu Addition in Cu/Fe/Zr-Mixed Metal Oxide Mediums for Two-step Thermochemical Methane Reforming)

  • 차광서;김홍순;이동희;조원준;이영석;김영호
    • 공업화학
    • /
    • 제18권6호
    • /
    • pp.618-624
    • /
    • 2007
  • Cu/Fe/Zr 혼합 산화물 매체 상에서의 2단계 열화학 메탄 개질 반응을 고정층 적외선 반응로를 이용하여 수행했다. 첫 번째 단계에서 금속 산화물은 CO, $H_2$ 및 환원된 금속 산화물을 생성하기 위하여 1173 K의 온도에서 메탄으로 환원되었다. 두번째 단계에서 환원된 금속 산화물은 $H_2$와 금속 산화물을 생성하기 위하여 973 K의 온도에서 재산화되었다. 본 연구에서는 Cu/Fe/Zr 혼합 산화물 내 Cu 첨가량에 따른 반응 특성과 사이클 반응을 평가하였다. Cu/Fe/Zr 혼합 산화물 매체 내 Cu 첨가량 증가에 따라 첫 번째 단계에서 $CH_4$ 전환율, $CO_2$로의 선택성 및 $H_2/CO$ 몰 비는 증가하였으며, CO로의 선택성은 감소하는 경향을 나타냈다. 한편, 두 번째 단계에서 $H_2$ 생성량은 Cu 첨가량 증가에 따라 감소하는 것으로 나타났다. Cu의 첨가량이 x = 0.7인 $Cu_xFe_{3-x}O_4/ZrO_2$ 매체는 내구성이 우수한 매체임을 지시하듯이 10회의 사이클 순환 반응에서 우수한 재생 성능을 나타냈다. 더 나아가 물 분해 단계에서 침적된 탄소의 가스화 반응은 매체 내 Cu 첨가에 의해 촉진되었다.

Investigation of bias illumination stress in solution-processed bilayer metal-oxide thin-film transistors

  • Lee, Woobin;Eom, Jimi;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.302.1-302.1
    • /
    • 2016
  • Solution-processed amorphous metal-oxide thin-film transistors (TFTs) are considered as promising candidates for the upcoming transparent and flexible electronics due to their transparent property, good performance uniformity and possibility to fabricate at a low-temperature. In addition, solution processing metal oxide TFTs may allow non-vacuum fabrication of flexible electronic which can be more utilizable for easy and low-cost fabrication. Recently, for high-mobility oxide TFTs, multi-layered oxide channel devices have been introduced such as superlattice channel structure and heterojunction structure. However, only a few studies have been mentioned on the bias illumination stress in the multi- layered oxide TFTs. Therefore, in this research, we investigated the effects of bias illumination stress in solution-processed bilayer oxide TFTs which are fabricated by the deep ultraviolet photochemical activation process. For studying the electrical and stability characteristics, we implemented positive bias stress (PBS) and negative bias illumination stress (NBIS). Also, we studied the electrical properties such as field-effect mobility, threshold voltage ($V_T$) and subthreshold slop (SS) to understand effects of the bilayer channel structure.

  • PDF

Multifunctionality in Ceramic/Metal Nanocomposites

  • Sekino, Tohru;Kondo, Hiroki;Niihara, Koichi
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.186-191
    • /
    • 2001
  • Several fabrication processes, corresponding nanostructural features and multifunctionality as well has been investigated for oxide ceramic based nanocomposites with metal nanodispersion (i.e., ceramic/metal nanocomposites). Transition metal (Ni, Co, etc) dispersed alumina and zirconia based nanocomposites have been synthesized by reducing and hot-press sintering of ceramic and metal oxide mixtures prepared by several method. Improved fracture strength (1.1 and 1.9 GPa for $Al_2O_3/Ni$ and $ZrO_2/Ni$ nanocomposites, respectively) of these composites have been achieved according to their nanostructures. In addition, ferromagnetic characteristic has been kept. The variation of magnetization with an applied stress has found to be more sensitive as smaller as the magnetic metal dispersion is. This result thus suggests the possibility of fracture and/or stress sensing of the composites by simple magnetic measurement.

  • PDF

반도체 가공 작업환경에서 부산물로 발생되는 주요 금속산화물의 입자 크기, 형상, 결정구조에 따른 독성 고찰 (Size, Shape, and Crystal Structure-dependent Toxicity of Major Metal Oxide Particles Generated as Byproducts in Semiconductor Fabrication Facility)

  • 최광민
    • 한국산업보건학회지
    • /
    • 제26권2호
    • /
    • pp.119-138
    • /
    • 2016
  • Objectives: The purpose of this study is to review size, shape, and crystal structure-dependent toxicity of major metal oxide particles such as silicon dioxide, tungsten trioxide, aluminum oxide, and titanium dioxide as byproducts generated in semiconductor fabrication facility. Methods: To review the toxicity of major metal oxide particles, we used various reported research and review papers. The papers were searched by using websites such as Google Scholar and PubMed. Keyword search terms included '$SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$) toxicity', 'health effects $SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$). Additional papers were identified in references cited in the searched papers. Results: In various cell lines and organs of human and animals, cytotoxicity, genotoxicity, hepatoxicity, fetotoxicity, neurotoxicity, and histopathological changes were induced by silicon dioxide, tungsten trioxide, aluminium oxide, and titanium dioxide particles. Differences in toxicity were dependent on the cell lines, organs, doses, as well as the chemical composition, size, surface area, shape, and crystal structure of the particles. However, the doses used in the reported papers were higher than the possible exposure level in general work environment. Oxidative stress induced by the metal oxide particles plays a significant role in the expression of toxicity. Conclusions: The results cannot guarantee human toxicity of the metal oxide particles, because there is still a lack of available information about health effects on humans. In addition, toxicological studies under the exposure conditions in the actual work environment are needed.

Metal Antenna 효과로 인한 게이트 산화막에서 정공 포획에 관한 연구 (Study of the Hole Trapping in the Gate Oxide due to the Metal Antenna Effect)

  • 김병일;이재호;신봉조;이형규;박근형
    • 전자공학회논문지D
    • /
    • 제36D권3호
    • /
    • pp.34-40
    • /
    • 1999
  • 최근, 플라즈마 공정에 의해 발생하는 게이트 산화막의 손상은 게이트 산화막의 두께가 10nm이하로 감소함에 따라서 가정 중요한 신뢰성 문제들 중의 하나가 되고 있다. 플라즈마로 인한 손상은 metal 안테나 테스트 구조들을 가지고 연구되었다. Metal 안테나를 가지고 있는 NMOS에서 플라즈마로 인한 전하 축적으로 말미암아 10nm의 게이트 산화막에 전자 포획뿐만 아니라 정공 포획이 발생하는 것이 관측되었다. 정공포획은 전자 포획의 경우와 유사하게 transconductance(gm)의 감소를 일으키기는 하지만, 그 정도가 훨씬 적었다. 이는 플라즈마로 인한 축적이 정공 포획이 발생한 소자의 게이트 산화막에 가한 전기적 stress 가 전자 포획이 발생한 소자의 경우보다 훨씬 적었기 때문일 것이다. 이 이론은 산화막에서의 Fowler-Nordheim 전류 특성을 측정한 결과들에 의해 입증되었다.

  • PDF

페라이트계 금속 산화물 매체 상에서 열화학 메탄 개질 반응 특성 (Reaction Characteristics of Thermochemical Methane Reforming on Ferrite-Based Metal Oxide Mediums)

  • 차광서;이동희;조원준;이영석;김영호
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.140-150
    • /
    • 2007
  • Thermochemical 2-step methane reforming, involving the reduction of metal oxide with methane to produce syngas and the oxidation of the reduced metal oxide with water to produce pure hydrogen, was investigated on ferrite-based metal oxide mediums. The mediums, CoFZ, CuFZ, or MnFZ, were composed of the mixture of M(M=Co, Cu or Mn)-substituted ferrite as an active component and $ZrO_2$ as a binder, respectively. The WZ medium, composed of the mixture of $WO_3$ and $ZrO_2$, was also prepared to compare. With an addition of $ZrO_2$, the surface area of the mediums was slightly increased and the sintering of active components was greatly suppressed during the reduction. The higher reactivity of the reduced mediums for water splitting was confirmed by the temperature programmed reaction. From the results of the thermochemical 2-step methane reforming, the reactivity of $CH_4$ reduction and water splitting with ferrite-based metal oxide mediums was relatively higher than that with WZ, and the order of reactivity of the mediums was MnFZ>CoFZ>CuFZ>WZ.

주철분말(鑄鐵粉末)의 소결조직(燒結組織)에 미치는 산화철(酸化鐵) 첨가(添加)의 효과(效果) (The Effect of Fe-Oxide Addition on the Sintered Structure of Cast Iron Power)

  • 김형수;김철범;나형용
    • 한국주조공학회지
    • /
    • 제10권2호
    • /
    • pp.154-161
    • /
    • 1990
  • The microstructures of sintered products of $Fe_2O_3$or $Fe_3O_4$-Oxide added cast iron powder was investigated. And the effects of particle size distribution was investigated too. As the result, the structures of sintered products did not related to the species of Fe-Oxide. Th porosity of sintered products was decreased in size and spherodized with increasing sintering temperature, decreasing Fe-Oxide quantity. Fe-Oxide itself did not hinder sintering of cast iron powder particularly, therefore sintering could be occurred without termination of reduction of it. And the sintered products of finer particle size distribution had finer and more spherodized porosity, and had minimized the deviation of size and shape of porosity.

  • PDF