DOI QR코드

DOI QR Code

산화주석 첨가에 따른 동화유약의 발색 변화

Color variation of copper glaze with the addition of tin oxide

  • 노형구 (한국세라믹기술원 이천분원) ;
  • 김수민 (한국세라믹기술원 이천분원) ;
  • 김응수 (한국세라믹기술원 이천분원) ;
  • 조우석 (한국세라믹기술원 이천분원)
  • No, Hyunggoo (Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Soomin (Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Ungsoo (Korea Institute of Ceramic Engineering & Technology) ;
  • Cho, Wooseok (Korea Institute of Ceramic Engineering & Technology)
  • 투고 : 2017.08.14
  • 심사 : 2017.09.27
  • 발행 : 2017.10.31

초록

본 연구에서는 산화주석(IV) 첨가량을 달리하여 동화유약 시편을 제조하고 발색기구를 분석하기 위하여 분광 분석, 결정상 분석, 미세구조 분석을 실시하여 색상과의 상관성을 분석하였다. 산화주석(VI) 첨가량이 증가함에 따라 동화유약의 붉은색은 사라지고 CIEab 값이 감소하여 무채색으로 발색하였다. 산화주석은 유약층에 고르게 분포하여 Cu nuclei가 성장하여 붉은색으로 발색하는 것을 방해하고 기포 주변의 metal Cu와 반응하여 합금을 형성하였다. 이로 인해 산화주석 첨가량이 증가함에 따라 금속 Cu 피크는 사라지고 미세한 $Cu_2O$ 피크만 남게 된다. 산화주석을 3.79 % 첨가하였을 때는 유약에 붉은색을 내는 $Cu_2O$보다 검정색을 나타내는 CuO와 Cassiterite $SnO_2$가 색상에 더 영향을 미치는 것으로 보여진다.

In this study copper glaze samples were prepared with varying amount of tin oxide, and the chromatic characteristics of glazes were explained on the results of spectrophotometric, crystalline phase, and microstructural analyses. The red color of copper glaze was dissipated with the addition of tin oxide and turned into achromatic color due to the decrease of CIEab values. Tin oxide homogeneously distributed in the glaze layer interfered with the red color generation coming from the growth of Cu nuclei, and formed an alloy with metal copper around bubbles. This resulted in the decrease of metal copper peak intensity with minor $Cu_2O$ peak. With the 3.79 % tin oxide addition the glaze was appeared as gray due to the black color CuO and Cassiterite $SnO_2$ phases.

키워드

참고문헌

  1. H.S. Hwang, "A scientific study of Korean copper-red ceramics", Ph.D. Thesis, Chung-Ang University, Seoul (2008), pp. 146-155.
  2. H. No, S. Kim, U. Kim and W. Cho, "Chromatic characteristics of copper glaze as a function of copper oxide addition and sintering atmosphere", J. Korean Ceram Soc. 54 (2017) 61. https://doi.org/10.4191/kcers.2017.54.1.04
  3. S.F. Brown and F.H. Norton, "Constitution of copperred glazes", J. Am. Ceram. Soc. 42 (1959) 499. https://doi.org/10.1111/j.1151-2916.1959.tb13566.x
  4. M. Wakamatsu, N. Takeuchi, H Nagai and S. Ishida, "Chemical states of copper and tin in copper glazes fired under various atmosphere", J. Am. Ceram. Soc. 72 (1989) 16. https://doi.org/10.1111/j.1151-2916.1989.tb05946.x
  5. P. Colomban and H.D. Schreiber, "Raman signature modification induced by copper nanoparticles in silicate glass", J. Raman Spectrosc. 36 (2005) 884. https://doi.org/10.1002/jrs.1379
  6. F. Garcia-Labiano, L.F. de Diego, A. Abad and P. Gayan, "Reduction and oxidation kinetics of a copperbased oxygen carrier prepared by impregnation for chemical-looping combustion", Ind. Eng. Chem. Res. 43 (2004) 8168. https://doi.org/10.1021/ie0493311
  7. J. Plewa and J. Skrzypek, "Kinetics of the reduction of copper oxide with carbon monoxide", Chem. Eng. Sci. 44 (1989) 2817. https://doi.org/10.1016/0009-2509(89)85091-2
  8. E.A. Goldstein and R.E. Mitchell, "Chemical kinetics of copper oxide reduction with carbon monoxide", Proceedings of the Combustion Institute 33 (2011) 2803.
  9. A.A. Ahmed and G.M. Ashour, "Effect of heat treatment on the crystallization of cuprous oxide in glass", Glass Technology 22 (1981) 24.
  10. P.A. Cuvelier, C. Andraud, D. Chaudanson, J. Lafait and S. Nitsche, "Copper red glazes: A coating with two families of particles", Appl. Phys. A 106 (2012) 915.
  11. A. Edgar, "Strong red-light scattering from colloidal copper in ZBLAN fluoride glass", J. Non-Cryst. Solids 220 (1997) 78. https://doi.org/10.1016/S0022-3093(97)00217-2
  12. R.D. Schmidt-Whitley, M. Martinez-Clemente and A. Revcolevschi, "Growth and microstructural control of single crystal cuprous oxide $Cu_2O$", J. Cryst. Growth 23 (1974) 113. https://doi.org/10.1016/0022-0248(74)90110-9