Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.1.10

Enhancing Gas Response Characteristics of Mixed Metal Oxide Gas Sensors  

Balamurugan, Chandran (School of Materials Science and Engineering, Chonnam National University,)
Song, Sun-Ju (School of Materials Science and Engineering, Chonnam National University,)
Kim, Ho-Sung (School of Materials Science and Engineering, Chonnam National University,)
Publication Information
Abstract
Semiconducting nanomaterials have attracted considerable interest in recent years due to their high sensitivity, selectivity, and fast response time. In addition, for portable applications, they have low power consumption, lightweight, simple in operation, a low maintenance cost. Furthermore, it is easy to manufacture microelectronic sensor structures with metallic oxide sensitive thin layers. The use of semiconducting metal oxides to develop highly sensitive chemiresistive sensing systems remains an important scientific challenge in the field of gas sensing. According to the sensing mechanisms of gas sensors, the overall sensor conductance is determined by surface reactions and the charge transfer processes between the adsorbed species and the sensing material. The primary goal of the present study is to explore the possibility of using semiconducting mixed metal oxide nanostructure as a potential sensor material for selective gases.
Keywords
Chemiresistive sensor; Mixed metal oxide; p and n-type electrical properties; Interface; Gas sensors;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Y. J. Hsiao, T. H. Fang, Y. S. Chang, Y. H. Chang, C. H. Liu, L. W. Ji, and W. Y. Jywe, "Structure and Luminescent Properties of $LaNbO_4$ Synthesized by Sol-Gel Process," J. Lumin., 126 [2] 866-70 (2007).   DOI
2 R. Haugsrud and T. Norby, "Proton Conduction in Rare Earth Ortho-Niobates and Orthotantalates," Nat. Mater., 5 193-96 (2006).   DOI
3 R. Hauigsrud and T. Norby, "High-Temperature Proton Conductivity in Acceptor-Doped $LaNbO_4$," Solid State Ionics, 177 [13-14] 1129-35 (2006).   DOI
4 C. Balamurugan, D.-W. Lee, and A. Subramani, "Preparation and LPG-Gas Sensing Characteristics of p-type Semiconducting $LaNbO_4$ Ceramic Material," Appl. Surf. Sci., 283 58-64 (2013).   DOI
5 Z. Zou, J. Ye, and H. Arakawa, "Photophysical and Photocatalytic Properties of $InMO_4$ (M = $Nb^{5+}$, $Ta^{5+}$) under Visible Light Irradiation," Mater. Res. Bull. 36 [7-8] 1185-93 (2001).   DOI
6 A. L. Petre, J. A. Perdigon-Melon, A. Gervasini, and A. Auroux, "Characterization and Reactivity of Group III Oxides Supported on Niobium Oxide," Catal. Today, 78 [1-4] 377-86 (2003).   DOI
7 Z. Zou, J. Ye, and H. Arakawa, "Structural Properties of $InNbO_4$ and $InTaO_4$: Correlation with Photocatalytic and Photophysical Properties," Chem. Phys. Lett., 332 [3-4] 271-77 (2000).   DOI
8 Z. Zou, J. Ye, K. Sayama, and H. Arakawa, "Direct Splitting of Water under Visible Light Irradiation with an Oxide Semiconductor Photocatalyst," Nature, 414 625-27 (2001).   DOI
9 C. Balamurugan, E. Vijayakumar, and A. Subramania, "Synthesis and Characterization of $InNbO_4$ Nanopowder for Gas Sensors," Talanta, 88 115-20 (2012).
10 C. Balamurugan, G. Bhuvanalogini, and A. Subramania, "Development of Nanocrystalline $CrNbO_4$ Based p-type Semiconducting Gas Sensor for LPG, Ethanol and Ammonia," Sens. Actuators, B, 168 165-71 (2012).   DOI
11 C. Balamurugan, D. W. Lee, and A. Subramania, "Selective Ethanol Gas Sensing Behavior of Mesoporous n-type Semiconducting $FeNbO_4$ Nanopowder Obtained by Niobium-Citrate Process," Curr. Appl. Phys., 14 [3] 439-46 (2014).   DOI
12 C. Balamurugana, A. Subashinia, G. N. Chaudharib, and A. Subramania, "Development of Wide Band Gap Sensor Based on $AlNbO_4$ Nanopowder for Ethanol," J. Alloys Compd., 526 110-15 (2012).
13 D. H. Dawson and D. E. Williams, "Gas-Sensitive Resistors: Surface Interaction of Chlorine with Semiconducting Oxides," J. Mater. Chem., 6 409-14 (1996).   DOI
14 V. Dusastre and D. E. Williams, "Gas-Sensitive Resistor Properties of the Solid Solution Series $Ti_x(Sn_{1-y}Sb_y)_{1-x}O_2$ (0 < x < 1, y=0, 0.01, 0.05)," J. Mater. Chem., 6 445-50 (1999).
15 T. Yu, X. Cheng, X. Zhang, L. Sui, Y. Xu, S. Gao, H. Zhao, and L. Huo, "Highly Sensitive $H_2S$ Detection Sensor at Low Temperature Based on Hierarchically Structured NiO Porous Nanowall Arrays," J. Mater. Chem. A, 3 11991-99 (2015).   DOI
16 B. Fromme, d-d-Excitations in Transition-Metal Oxides: A Spin Polarized Electron Energy Loss (SPEELS) Spectroscopy Studies; Verlag Berlin Heidelberg, New York, 2001.
17 N. Ajoudanian and A. N. Jhieh, "Enhanced Photocatalytic Activity of Nickel Oxide Supported on Clinoptilolite Nanoparticles for the Photodegradation of Aqueous Cephalexin," Mater. Sci. Semicond. Process., 36 162-69 (2015).   DOI
18 C. Cantalini, M. Post, D. Buso, M. Guglielmi, A. Martucci, "Gas Sensing Properties of Nanocrystalline NiO and $Co_3O_4$ in Porous Silica Sol-Gel Films," Sens. Actuators, B, 108 [1-2] 184-92 (2005).   DOI
19 M. A. Pena and J. L. G. Fierro, "Chemical Structures and Performance of Perovskite Oxides," Chem. Rev., 101 [7] 1981-2018 (2001).   DOI
20 J. Malowney, N. Mestres, X. Borrise, A. Calleja, R. Guzman, J. Llobet, J. Arbiol, T. Puig, X. Obradors, and J. Bausells, "Functional Oxide Nanostructures Written by EBL on Insulating Single Crystal Substrates," Microelectron. Eng., 110 94-9 (2013).   DOI
21 S. Mathur, H. Shen, N. Lecerf, A. Kjekshus, H. Fjellvag, and G. F. Goya, "Nanocrystalline Orthoferrite $GdFeO_3$ from a Novel Heterobimetallic Precursor," Adv. Mater., 14 [19] 1405-9 (2002).   DOI
22 S. Palimar, S. D. Kaushik, V. Siruguri, D. Swain, A. E. Viegas, C. Narayana, and N. G. Sundaram, "Investigation of Ca Substitution on the Gas Sensing Potential of $LaFeO_3$ Nanoparticles towards Low Concentration $SO_2$ Gas," Dalton Trans., 45 13547-55 (2016).   DOI
23 X. Li, C. Tang, M. Ai, L. Dong, and Z. Xu, "Controllable Synthesis of Pure-Phase Rare-Earth Orthoferrites Hollow Spheres with a Porous Shell and their Catalytic Performance for the CO + NO Reaction," Chem. Mater., 22 4879-89 (2010).   DOI
24 V. V. Kharton, A. A. Yaremchenko, A. V. Kovalevsky, A. P. Viskup, E. N. Naumovich, and P. F. Kerko, "Perovskite-Type Oxides for High-Temperature Oxygen Separation Membranes," J. Membr. Sci., 163 [2] 307-17 (1999).   DOI
25 E. Traversa, S. Matsushima, G. Okada, Y. Sadaoka, Y. Sakai, and W. Watanabe, "$NO_2$ Sensitive $LaFeO_3$ Thin Films Prepared by r.f. Sputtering," Sens. Actuators, B, 25 [1-3] 661-64 (1995).   DOI
26 V. Bedekar, O. D. Jayakumar, J. Manjanna, and A. K. Tyagi, "Synthesis and Magnetic Studies of Nano-Crystalline $GdFeO_3$," Mater. Lett., 62 [23] 793-95 (2008).
27 C. Luyo, R. Ionescu, L. F. Reyes, and Z. Topalian, "Gas Sensing Response of NiO Nanoparticles Films Made by Reactive Gas Deposition," Sens. Actuators, B, 138 [1] 14-20 (2009).   DOI
28 J. A. Dirksen, K. Duval, and T. A. Ring, "NiO Thin-Film Formaldehyde Gas Sensor," Sens. Actuators, B, 80 [2] 106-15 (2001).   DOI
29 N. Miura, J. Wang, M. Nakatou, P. Elumalai, S. Zhuiykov, and M. Hasei, "High Temperature Operating Characteristics of Mixed-Potential-Type $NO_2$ Sensor Based on Stabilized-Zirconia Tube and NiO Sensing Electrode," Sens. Actuators, B, 114 [2] 903-9 (2006).   DOI
30 C. Y. Lee, C. M. Chiang, Y. H. Wang, and R. M. Ma, "A Self-Heating Gas Sensor with Integrated NiO Thin-Film for Formaldehyde Detection," Sens. Actuators, B, 122 [2] 503-10 (2007).   DOI
31 C. Balamurugan, Y. J. Jeong, and D. W. Lee, "Enhanced $H_2S$ Sensing Performance of a p-type Semiconducting PdO-NiO Nanoscale Heteromixture," Appl. Surf. Sci., 420 638-50 (2017).   DOI
32 V. D. Kapse, S. A. Ghosh, G. N. Chaudhari, F. C. Raghuwanshi, and D. D. Gulwade, "$H_2S$ Sensing Properties of La-Doped Nanocrystalline $In_2O_3$," Vacuum, 83 [2] 346-52 (2009).   DOI
33 S. Cho, J. Ma, Y. Kim, Y. Sun, G. Wong, and J. Ketterson, "Photoluminescence and Ultraviolet Lasing of Polycrystalline ZnO Thin Films Prepared by the Oxidation of the Metallic Zn," Appl. Phys. Lett., 75 2761 (1999).   DOI
34 C. Balamurugan and D. W. Lee, "Perovskite Hexagonal $YMnO_3$ Nanopowder as p-type Semiconductor Gas Sensor for $H_2S$ Detection," Sens. Actuators, B, 221 857-66 (2015).   DOI
35 C. Moure and O. Pena, "Recent Advances in Perovskites: Processing and Properties," Prog. Solid State Chem., 43 [4] 123-48 (2015).   DOI
36 M. F. Struve, J. N. Brisbois, R. ArdenJames, M. W. Marshall, and D. C. Dorman, "Neurotoxicological Effects Associated with Short-Term Exposure of Sprague-Dawley Rats to Hydrogen Sulfide," Neurotoxicology, 22 [3] 375-85 (2001).   DOI
37 Y. G. Yu, D. K. Ning, and L. G. Qian, "The First-Principle Calculation of $H_2S$ Adsorption and Decomposition on the ZnO (0001) Surface," Chin. J. Struct. Chem., 29 1139-46 (2010).
38 Y. Zhang, Z. H. Tang, Z. Ren, S. L. Qu, M. H. Liu, L. S. Liu, and Z. S. Jiang, "Hydrogen Sulfide, the Next Potent Preventive and Therapeutic Agent in Aging and Age-Associated Diseases," Mol. Cell. Biol., 33 [6] 1104-13 (2013).   DOI
39 C. Balamurugan, S. Arunkumar, and D.-W. Lee, "Hierarchical 3D Nanostructure of $GdInO_3$ and Reduced-Graphene-Decorated $GdInO_3$ Nanocomposite for CO Sensing Applications," Sens. Actuators, B, 234 155-66 (2016).   DOI
40 C. Balamurugan, A. R. Maheswari, and D.-W. Lee, "Structural, Optical, and Selective Ethanol Sensing Properties of p-type Semiconducting $CoNb_2O_6$ Nanopowder," Sens. Actuators, B, 205 [15] 289-97 (2014).   DOI
41 C. Balamurugan, D. W. Lee, A. R. Maheswari, and M. Parmar, "Porous Wide Band Gap $BiNbO_4$ Ceramic Nanopowder Synthesised by Low Temperature Solution-Based Method for Gas Sensing Applications," RSC Adv., 4 54625-30 (2014).   DOI
42 T. Tabari and H. Tavakkoli, "Fabrication and Characterization of Perovskite-Type Oxide $LaFe_{0.9}Co_{0.1}O_3$ Nanoparticles and Its Performance in Aerobic Oxidation of Thiols to Disulfide," Chin. J. Catal., 33 [11] 1791-96 (2012).   DOI
43 R. Shukla, V. Grover, S. K. Deshpande, D. Jain, and A. K. Tyagi, "Synthesis and Structural and Electrical Investigations of a Hexagonal $Y_{1-x}Gd_xInO_3$ (0.0 ${\leq}$ x ${\leq}$ 1.0) System Obtained via Metastable C-Type Intermediates," Inorg. Chem., 52 [22] 13179-87 (2013).   DOI
44 D. H. Kuo and K. C. Huang, "Phase Composition and Properties of Solid Solutions of $GdFeO_3-GdInO_3$ Bulks," Ceram. Int., 34 [6] 1503-7 (2008).   DOI
45 L. G. Ortiz, J. R. Gomez, J. M. F. Alvarez, H. G. Bonilla, M. L. Olvera, V. M. R. Betancourtt, Y. V. Gomez, A. G. Cervantes, and J. S. Salazar, "Synthesis, Characterization and Sensitivity Tests of Perovskite-Type $LaFeO_3$ Nanoparticles in CO and Propane Atmospheres," Ceram. Int., 42 [16] 18821-27 (2016).   DOI
46 A. R. Phani, S. Manorams, and V. J. Rao, "Preparation, Characterization and Electrical Properties of $SnO_2$ Based Liquid Petroleum Gas Sensor," Mater Chem. Phys., 58 [2] 101-8 (1999).   DOI
47 T. Yamamoto, T. Shiosaki, and A. Kawabata, "Characterization of ZnO Piezoelectric Films Prepared by rf Planarmagnetron Sputtering," J. Appl. Phys., 51 3113-20 (1980).
48 K. Keis, E. Magnusson, H. Lindstorm, S. E. Lindquist, and A. Hagfeldt, "A 5% Efficient Photoelectrochemical Solar Cell Based on Nanostructured ZnO Electrodes," Sol. Energy Mater. Sol. Cells, 73 [1] 51-8 (2002).   DOI
49 F. Menil, V. Coillard, and C. Lucat, "Critical Review of Nitrogen Monoxide Sensors for Exhaust Gases of Lean Burn Engines," Sens. Actuators, B, 67 [1-2] 1-23 (2000).   DOI
50 S. Zhuiykov and N. Miura, "Development of Zirconia-Based Potentiometric $NO_x$ Sensors for Automotive and Energy Industries in the Early 21st. Century: What are the Prospects for Sensors?," Sens. Actuators, B, 121 [2] 639-51 (2007).   DOI
51 Y. D. Wang, X. H. Wu, and Z. L. Zhou, "Novel High Sensitivity and Selectivity Semiconductor Gas Sensor Based on the p+n Combined Structure," Solid-State Electron., 44 [9] 1603-7 (2000).   DOI
52 S. K. Pandey, K. H. Kim, and K. T. Tang, "A Review of Sensor-Based Methods for Monitoring Hydrogen Sulfide," Trends Anal. Chem., 32 87-99 (2012).   DOI
53 C. Balamurugan and D. W. Lee, "A Selective $NH_3$ Gas Sensor Based on Mesoporous p-type $NiV_2O_6$ Semiconducting Nanorods Synthesized Using Solution Method," Sens. Actuators, B, 192 414-22 (2014).   DOI
54 T. H. Kim, J. W. Yoon, and J. H. Lee, "Avolatile Organic Compound Sensor Using Porous $Co_3O_4$ Spheres," J. Korean Ceram. Soc., 53 [2] 134-38 (2016).   DOI
55 Y.-J. Jeong, C. Balamurugan, and D.-W. Lee, "Enhanced $CO_2$ Gas-Sensing Performance of ZnO Nanopowder by La Loaded during Simple Hydrothermal Method," Sens. Actuators, B, 229 288-96 (2016).   DOI
56 Y. Aikawa, T. Katsufuji, T. Arima, and K. Kato, "Effect of Mn Trimerization on the Magnetic and Dielectric Properties of Hexagonal $YMnO_3$," Phys. Rev. B, 71 184418-22 (2005).   DOI
57 J. Zhu and A. Thomas, "Perovskite-Type Mixed Oxides as Catalytic Material for NO Removal," Appl. Catal., B, 92 [3-4] 225-33 (2009).   DOI
58 B. B. V. Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, "The Origin of Ferroelectricity in Magnetoelectric $YMnO_3$," Nat. Mater., 3 164-70 (2004).   DOI
59 J. Park, J.-G. Park, G. S. Jeon, H. Y. Choi, C. Lee, W. Jo, R. Bewley, K. A. McEwen, and T. G. Perring, "Magnetic Ordering and Spin-Liquid State of $YMnO_3$," Phys. Rev. B, 68 104426-6 (2003).   DOI
60 Z. U. Abideen, J.-H. Kim, J. H. Lee, J. Y. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Electrspun Metal Oxide Composite Nanofibers Gas Sensors: A Review," J. Korean Ceram. Soc., 54 [5] 366-79 (2017).   DOI
61 Z. Hao, Qi, M. Chuai, B. Xiao, T. Yang, Y. Luo, and M. Zhang, "Synthesis of Dandelion-Like NiO Hierarchical Structures Assembled with Dendritic Units and their Performances for Ethanol Gas Sensing," New J. Chem., 39 7873-78 (2015).   DOI
62 N. Savage, B. Chwieroth, A. Ginwalla, B. R. Patton, S. A. Akbar, and P. K. Dutta, "Composite n-p Semiconducting Titanium Oxides as Gas Sensors," Sens. Actuators, B, 79 [1] 17-27 (2001).   DOI
63 G. Korotcenkov, "Practical Aspects in Design of One-Electrode Semiconductor Gas Sensors: Status Report," Sens. Actuators, B, 121 [2] 664-78 (2007).   DOI
64 A. R. Phani, S. V. Manorama, and V. J. Rao, "X-Ray Photoelectron Spectroscopy Studies on Pd Doped $SnO_2$ Liquid Petroleum Gas Sensor," Appl. Phys. Lett., 71 [16] 2358-60 (1997).   DOI
65 V. Ravi, "A Coprecipitation Technique to Prepare $SrNb_2O_6$," Mater. Charact., 55 [1] 92-5 (2005).   DOI
66 D. P. Kozlenko, S. E. Kichanov, S. Lee, J. G. Park, V. P. Glazkov, and B. N. Savenko, "High-Pressure Effect on the Crystal and Magnetic Structures of the Frustrated Antiferromagnet $YMnO_3$," JETP Lett., 82 [4] 193-97 (2005).   DOI
67 N. Natarajan, V. Samuel, R. Pasricha, and V. Ravi, "A Coprecipitation Technique to Prepare $BaNb_2O_6$," Mater. Sci. Eng. B, 117 [2] 169-71 (2005).   DOI
68 R. Pasricha and V. Ravi, "Preparation of Nanocrystalline $MgNb_2O_6$ by Citrate Gel Method," Mater. Lett., 59 2146-48 (2005).   DOI
69 N. V. Hieu, N. D. Khonang, D. D. Trung, L. D. Toan, and N. V. Duy, "Comparative Study on $CO_2$ and CO Sensing Performance of LaOCl-Coated ZnO Nanowires," J. Hazard Mater., 244 209-16 (2013).
70 H. Xu, X. Liu, D. Cui, M. Li, and M. Jiang, "A Novel Method for Improving the Performance of ZnO Gas Sensors," Sens. Actuators, B, 114 [1] 301-7 (2006).   DOI
71 G. Centi, G. Golonelli, and G. Busca, "Modification of the Surface Pathways in Alkane Oxidation by Selective Doping of Broensted Acid Sites of Vanadyl Pyrophosphate," J. Phys. Chem., 94 [17] 6813-19 (1990).   DOI
72 P. Conception, A. Galli, J. M. Lopez Nieto, A. Dejoz, and M. I. Vazquez, "On the Influence of the Acid-Base Character of Catalysts on the Oxidative Dehydrogenation of Alkanes," Top. Catal., 3 [3-4] 451-60 (1996).   DOI
73 J. C. Vedrine, J. M. M. Millet, and J.-C. Volta, "Molecular Description of Active Sites in Oxidation Reactions: Acid-Base and Redox Properties, and Role of Water," Catal. Today, 32 [1-4] 115-23 (1996).   DOI
74 F. E. Osterloh, "Inorganic Materials as Catalysts for Photochemical Splitting of Water," Chem. Mater., 20 [1] 35-54 (2007).   DOI
75 V. V. Deshpande, M. M. Patil, S. C. Navale, and V. Ravi, "A Coprecipitation Technique to Prepare $ZnNb_2O_6$ Powders," Bull. Mater. Sci., 28 [3] 205-7 (2005).   DOI
76 Y. Zhang, C. Liu, G. Pang, S. Jiao, S. Zhu, D. Wang, D. Liang, and S. Feng, "Hydrothermal Synthesis of a $CaNb_2O_6$ Hierarchical Micro/Nanostructure and Its Enhanced Photocatalytic Activity," Eur. J. Inorg. Chem., 2010 [8] 1275-82 (2010).   DOI
77 M. Zaghrioui, V. Ta Phuoc, R. A. Souza, and M. Gervais, "Polarized Reflectivity and Lattice Dynamics Calculation of Multiferroic $YMnO_3$," Phys. Rev. B, 78 184305-12 (2008).   DOI
78 S. N. Akihiko Kudo and H. Kato, "Overall Water Splitting into $H_2$ and $O_2$ under UV Irradiation on NiO-loaded $ZnNb_2O_6$ Photocatalysts Consisting of $d^{10}$ and $d^0$ Ions," Chem. Lett., 28 1197-98 (1999).   DOI
79 A. Marsal, A. Cornet, and J. R. Morante, "Study of the CO and Humidity Interference in La Doped Tin Oxide $CO_2$ Gas Sensor," Sens. Actuators, B, 94 [3] 324-29 (2003).   DOI
80 D. H. Kim, J. Y. Yoon, H. C. Park, and K. H. Kim, "$CO_2$ Sensing Characteristics of $SnO_2$ Thick Film by Coating Lanthanum Oxide," Sens. Actuators, B, 62 [1] 61-6 (2000).   DOI
81 C.-Y. Kim, J. W. Elam, P. C. Stair, and M. J. Bedzyk, "Effects of Off-Stoichiometry of $LiC_6$ on the Lithium Diffusion Mechanism and Diffusivity by First Principles Calculations," J. Phys. Chem. C, 114 2375-79 (2010).   DOI
82 S. Zafeiratos, F. E. Paloukis, M. M. Jaksic, and S. G. Neophytides, "Thermal Stability of Electrodeposited Nickel on Vanadium: Evidence for Oxygen Diffusion and Intermetallic Phase Formation," Surf. Sci., 552 [1-3] 215-28 (2004).   DOI
83 D. Liu, Y. Liu, S. Q. Huang, and X. Yao, "Phase Structure and Dielectric Properties of $Bi_2O_3-ZnO-Nb_2O_5$-based Dielectric Ceramics," J. Am. Chem. Soc., 76 [8] 2129-32 (1993).
84 R. C. Pullar, "The Synthesis, Properties, and Applications of Columbite Niobates ($M^{2+}Nb_2O_6$): A Critical Review," J. Am. Ceram. Soc., 92 [3] 563-77 (2009).   DOI
85 V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides; pp. 159-61, Cambridge University Press, New York, 1994.
86 J. R. Istas, R. de Borger, L. de Temmerman, Guns, K. Meeus-Verdinne, A. Ronse, P. Scokart, and M. Termonia, "Effect of Ammonia on the Acidification of the Environment", European Communities Rept. No. EUR 11857 EN (1988).
87 S. V. Krupa, "Effects of Atmospheric Ammonia ($NH_3$) on Terrestrial Vegetation: A Review," Environ. Pollut., 124 [2] 179-21 (2003).   DOI
88 Y. C. Liou, W. C. Tsai, and H. M. Chen, "Low-Temperature Synthesis of $BiNbO_4$ Ceramics Using Reaction-Sintering Process," Ceram. Int., 35 [6] 2119-22 (2009).   DOI
89 H. C. Ling, M. F. Yan, and W. W. Rhodes, "High Dielectric Constant and Small Temperature Coefficient Bismuth-Based Dielectric Compositions," J. Mater. Res., 5 [8] 1752-62 (1990).
90 E. S. Kim and W. Choi, "Effect of Phase Transition on the Microwave Dielectric Properties of $BiNbO_4$," J. Eur. Ceram Soc., 26 [10-11] 1761-66 (2006).   DOI
91 B. Timmer and O. W. Berg, "Ammonia Sensors and their Applications-A Review," Sens. Actuators, B, 107 [2] 666-77 (2005).   DOI
92 T. Mokkelbost, H. L. Lein, P. E. Vullum, R. Holmestad, T. Grande, and M.-A. Einarsrud, "Thermal and Mechanical Properties of $LaNbO_4$-Based Ceramics," Ceram. Int., 35 [7] 2877-83 (2009).   DOI