• Title/Summary/Keyword: Metal matrix composite (MMC)

Search Result 52, Processing Time 0.026 seconds

A Study on the Frictional Abrasion Properties of MMC (금속기 복합재료의 마찰ㆍ마모 특성에 관한 연구)

  • 이광영;박원조;허선철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.171-177
    • /
    • 2002
  • Metal matrix composites had generated a lot of interest in recent times because of significant in specific properties, it was also highlighted as the material of frontier industry because strength, heat-resistant, corrosion-resistant and wear-resistant were superiored. In recent years, the study of metal matrix composite has increased by aluminum alloy. The study is based on the tribological properties of AC4CH that is a part of the mechanical property of metal matrix composites. Metal matrix composite that is produced from matrix material AC4CH and reinforcement SiO$_2$, Al$_2$O$_3$ and TiO$_2$ are added to the metal matrix composite fur strength so binding among the whisker can take place. Each metal matrix composite is produced using the squeeze casting method. To test for tribe a pin-on-disk machine and lubricant is used without paraffine 8.2CST at room temperature which is 40$\^{C}$. As the results of this study, the tribological properties of each specimen are more improved than AC4CH. The variation of coefficient resistance is more stable at the AC4CH and TiO$_2$, but the variation rates are higher at the inanimate binder.

Initiation and Growth Behavior of Small Surface Fatigue Crack on SiC Particle Reinforced Aluminum Composite (SiC 입자 강화 알루미늄기 복합재료의 표면미소 피로균열 발생 및 초기진전거동)

  • Lee, Sang-Hyoup;Choi, Young-Geun;Kim, Sang-Tae;Lee, Moon-Hwan
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.15-22
    • /
    • 2008
  • Reversed plane bending fatigue tests were conducted on SiC particle aluminum composite. The initiation and growth behaviors of small surface fatigue cracks were continuously monitored by the replica technique and investigated in detail. The fatigue life of MMC is shorter than that of matrix because there exists interface debonding of SiC particles and matrix on the whole face of the notch part in the casting metal matrix composite(MMC). The coalescence of micro-cracks was observed in the tests conducted at high stress levels. Due to the coalescence, a higher crack growth rate of small cracks rather than those of long cracks was recognized in da/dn-$K_{max}$ relationship.

Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(II) (횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(II))

  • Kang Ji-Woong;Kwon Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.26-31
    • /
    • 2005
  • The strong continuous fiber reinforced metal matrix composites (MMCs) are recently used in aerospace and transportation applications as an advanced material due to its high strength and light weight. Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In order to be able to utilize these MMCs effectively and with safety, it must be determined their elastic plastic behaviors at the interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interlace was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. Using proposed model, the effects of the interface region and fiber arrangement in MMCs on the distributions of stress and strain are evaluated. The stress distributions of a thin multi layer interface have much less changes compared with conventional perfect interface. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

The Effect of Metal Fibers on the Tribology of Automotive Friction Materials (마찰재에 함유된 금속섬유와 마찰 특성의 연관관계)

  • Ko, Kil-Ju;Cho, Min-Hyung;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated. Based on a simple experimental formulation, friction materials with the same amount of metal fibers were tested using a pad-on-disk type friction tester. Two different materials (gray cast iron and aluminum metal matrix composite (MMC)) were used for disks rubbing against the friction materials. Results front ambient temperature tests revealed that the friction material containing Cu fibers sliding against gray cast iron disk showed a distinct negative $\mu$-v (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speeds. The negative $\mu$- v relation was not observed when the Cu-containing friction materials were rubbed against the Al-MMC counter surface. Elevated temperature tests showed that the friction level and the intensity of friction force oscillation were strongly affected by the thermal conductivity and melting temperature of metallic ingredients of the friction couple. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC (metal matrix composite) disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and that steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.

Thixoforging Process and the Problems of Hollow Type Metal Matrix Composite Part (중공형 금속 복합 재료 부품의 Thixoforging 공정과 문제점)

  • 이승후;허재찬;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.808-811
    • /
    • 1997
  • MMC has excellent mechanical properties in many ways in automotive industrial, and get into the spotlight as a light materials substituted for iron and steel. But the know-how about MMC research lack, MMC is expensive and difficult to apply the sound parts. Especially it is difficult to produce the hollow type parts composed with MMC. Therefore, hollow type parts of metal composites by using thixoforming process which as co-existing solidus-liquidus phase, it is very important to obtain forming condition. In this study, MMC billet producted by electro-magnetic stirring and mechanical stirring process is formed to hollow type parts of thixoforming process and inspected of suitability for application. It is optimized production condition, and applied to experiment. After variable materials were produced for thixoforming process, it were inspected of suitability for application by comparsion with mechanical properties. In this study, used materials were A357, A380 10%vol, and 20%vol SiCp, and the size of particultes were 14$\mu\textrm{m}$ and 5.5$\mu\textrm{m}$.

  • PDF

Wear Properties of Thermal Sprayed Al-based Metal Matrix Composites Against Different Counterparts (용사법에 의해 제조된 $Al/Al_2O_3$ 복합재료의 상대재에 따른 마모특성)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.60-65
    • /
    • 2008
  • This study aims at investigating the wear properties of thermally sprayed $Al/Al_2O_3$ metal matrix composite(MMC) coating against different counterparts. $Al/Al_2O_3$ MMC coatings were fabricated using a flame spray system on an Al 6061 substrate. Dry sliding wear tests were performed using the sliding speeds of 0.2m/s and the applied loads of 1 and 2 N. AISI 52100, $Al_2O_3$, $Si_3N_4\;and\;ZrO_2$ balls(diameter: 8mm) were used as counterpart materials. Wear properties of $Al/Al_2O_3$ MMC coatings were analyzed using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that wear properties of $Al/Al_2O_3$ composite coatings were much influenced by counterpart materials. In the case of AISI 52100 used as counterparts, the wear rate of composites coating layer increased according to the increase of the applied load. On the contrary, in the case of ceramics used as counterparts, the wear rate of composites coating layer decreased according to the increase of the applied load.

  • PDF

A Micromechanical Analysis on the Elastic Behavior in Discontinuous Metal Matrix Composites (불연속 금속복합체에서의 탄성거동에 관한 미세구조역학적 해석)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.58-64
    • /
    • 1997
  • A micromechanics model to describe the elastic behavior of fiber or whisker reinforced metal matrix composites was developed and the stress concentrations between reinforcements were investigated using the modified shear lag model with the comparison of finite element analysis (FEA). The rationale is based on the replacement of the matrix between fiber ends with the fictitious fiber to maintain the compatibility of displacement and traction. It was found that the new model gives a good agreement with FEA results in the small fiber aspect ratio regime as well as that in the large fiber aspect ratio regime. By the calculation of the present model, stress concentration factor in the matrix and the composite elastic modulus were predicted accurately. Some important factors affecting stress concentrations, such as fiber volume fraction, fiber aspect ratio, end gap size, and modulus ratio, were also discussed.

  • PDF

Die Sinking Electrical Discharge Machining of SiC/AI Metal Matix Composite (탄화규소/알루미늄 금속계 복합재료의 형상방전가공)

  • 왕덕현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.34-40
    • /
    • 1998
  • Conductive metal matrix composite(MMC) material of 30% silicon carbide particulated based on aluminum matrix was machined by die sinking electrical discharge machining(EDM) process according to different current and duty factor for reverse polarity of electrode. Material removal rate(MRR) was examined by process under various operation conditions. The surface morphology was evaluated by surface roughness parameter and scanning electron microscopy(SEM) research. The MRR was suddenly increased over 11 ampere of current, and it was slightly changed over 0.3 of duty factor. The maximum surface roughness of EDMed surface was affected by the duty factor. The SEM photograghs of EDMed surface showed wide recast distribution region of melting materials as increased of current and duty factor.

  • PDF

Analysis of 3-D residual Stresses Due to Shape Memory Effects (형상기억효과에 따른 3차원 잔류응력의 해석)

  • 김홍건
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.42-46
    • /
    • 1999
  • The strengthening of a metal matrix composite(MMC) by the shape memory effect(SME) of dispersed TiNi particles was theoretically studied. An analytical model was constructed for the prediction of the average residual stress(<$\delta$>m) on the base of the Eshelby's equivalent inclusion method. The analysis was performed on the TiNi particle/Al metal matrix composites with varying volume fractions and prestrains of the particle. The residual stress caused by the shape memory of predeformed fillers has been predicted to contribute significantly to the strengthening of this composite.

  • PDF

Analysis of Residual Stresses Due to Shape Memory Effects (형상기억효과에 의해 발생되는 잔류응력의 해석)

  • 노홍길;김홍건;조영태;이동주;정태진;김경석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.147-152
    • /
    • 1999
  • The strengthening of a metal matrix composite(MMC) by the shape memory effect(SME) of dispersed TiNi particles was theoretically studied. An analytical model was constructed for the prediction of the average residual stress(<$\sigma$>/sub/m) on the base of the Eshelby's equivalent inclusion method. The analysis was performed on the TiNi particle/Al metal matrix composites with varying volume fractions and prestrains of the particle. The residual stress caused by the shape memory of predeformed fillers has been predicted to contribute significantly to the strengthening of this composite.

  • PDF