DOI QR코드

DOI QR Code

Initiation and Growth Behavior of Small Surface Fatigue Crack on SiC Particle Reinforced Aluminum Composite

SiC 입자 강화 알루미늄기 복합재료의 표면미소 피로균열 발생 및 초기진전거동

  • 이상협 (구미1대학 자동차산업계열) ;
  • 최영근 (구미1대학 자동차산업계열) ;
  • 김상태 (영남대학교 기계공학부) ;
  • 이문환 (구미1대학 자동차산업계열)
  • Published : 2008.12.31

Abstract

Reversed plane bending fatigue tests were conducted on SiC particle aluminum composite. The initiation and growth behaviors of small surface fatigue cracks were continuously monitored by the replica technique and investigated in detail. The fatigue life of MMC is shorter than that of matrix because there exists interface debonding of SiC particles and matrix on the whole face of the notch part in the casting metal matrix composite(MMC). The coalescence of micro-cracks was observed in the tests conducted at high stress levels. Due to the coalescence, a higher crack growth rate of small cracks rather than those of long cracks was recognized in da/dn-$K_{max}$ relationship.

본 연구는 SiC입자를 20% 강화된 알루미늄기 복합재료를 이용해서 평면굽힘피로시험을 향했다. 표면미소피로균열의 발생 및 진전거동은 레프리카법으로 연속관찰을 했고 파괴원인과 파괴기구를 규명하기 위해서 주사전자현미경을 이용했다. da/dn-$K_{max}$ 관계에서 저응력 레벨에서는 여러 개의 균열이 진전하고, 합체 등이 일어나는 것으로부터 진전속도는 꽤 분산(흐트러짐)이 심하고, 고응력 레벨에서는 비교적 흐트러짐은 적게 나타나는 것을 알 수 있었다.

Keywords

References

  1. K.Murayama, 1992, 'Activation of Yses Development in Advanced Composite Materials,' Material System, Vol. 11, pp. 5-12
  2. S.Kumai, J.E.King and J.F.Knoot, 1990, 'Fatigue crack growth in SiC particulate reinforced aluminium alloys,' Fatigue90, Vol. II, pp. 869-874
  3. P.Paris, F.Erdogan, 1963, 'A Critical Analysis of Crack propagation Laws,' Trans. ASME,Ser.D, 85, pp. 528-533
  4. W.Elber, 1971, 'The Significance of Fatigue Crack Closure', ASTM,STP486, pp. 230-242
  5. J.K.Shang and R.O.Ritchie, 1989, 'On the particle-size dependence of fatigue crack propagation thresholds in SiC-particulate-reinforced aluminum-alloy composites:Role of crack closure and crack trapping', Acta metall., Vol. 37, No. 8, pp. 2267-2278 https://doi.org/10.1016/0001-6160(89)90154-5
  6. 小林俊郞 外4名, 1991, SiC粒子强化6061アルミニウムの 疲勞龜裂傳播特性, 日本金屬學會誌, 第55卷, 第1號, pp. 72-78
  7. A.F Whitehouse and T.W.Clyne, 1993, 'Cavity Formation During Tensile Stringing of Particulate and short Fiber Metal Matrix Composites,' Acta. Metall. Mater., Vol. 41, No. 6, pp. 1701-1711 https://doi.org/10.1016/0956-7151(93)90189-Y
  8. 小磯信重,ほか 2名, 1989, 'SiC 粒子强化 Al 合金의 疲勞特性', 材料, Vol. 38, No. 433, pp. 1206-1211
  9. S.B. Biner, 1990, 'Growth of Fatigue Cracks Emanating from Notches in SiC particulate Aluminum Composite', Fatigue Fract. Engng. Mater. Struct., Vol. 13, No. 6, pp. 637-646 https://doi.org/10.1111/j.1460-2695.1990.tb00633.x
  10. E.R.de los Rios, Tang,Z., and Miller,K.J., 1984, 'Short crack fatigue behaviour in a medium carbon steel', Fatigue Engng. mater. struct., Vol. 7, pp. 97-108 https://doi.org/10.1111/j.1460-2695.1984.tb00408.x
  11. M.H.El Haddad., K.N.Smith., T.H.Topper., 1979, 'Fatigue crack propagation of short cracks,' ASME Journal of Engng. Mater. and Technology, Vol. 101, pp. 42-46 https://doi.org/10.1115/1.3443647
  12. S.Pearson, 1975, 'Initiation of Fatigue Cracks in Commercial Alloys and the subsequent propagation of very short cracks,' Eng. Fract. Mech., Vol. 7,pp. 235-247 https://doi.org/10.1016/0013-7944(75)90004-1
  13. J.Lankford, 1982, 'The Growth of Long Fatigue Crack Growth in a SiC Reinforced Aluminum Alloy,' Fatigue Fract. Engng. Mater. Struct., Vol. 5, No. 3, pp. 233-248 https://doi.org/10.1111/j.1460-2695.1982.tb01251.x
  14. J.K.Shang, R.O.Ritchie, 1989, 'Crack Bridging by uncracked Ligaments during Fatigue-Crack Growth in SiC-Reinforced Aluminum-Alloy Composites,' Metall. Trans. A, Vol. 20A, pp. 897-908
  15. 增田千利, ほか1名, 1989, 'SiC ウイスカ-强化及び SiC 粒子分散 複合材料の疲勞破壞 機構,' 鐵と鋼, Vol. 75, No. 9, pp. 1753-1760
  16. J.C.Newman, I.S.Raju, 1983, 'Stress intensity factor equations for cracks in three-dimensional finite bodies,' ASTM STP 791, pp. 238-265
  17. 皮籠石紀雄, ほか2名, 1989, 'Al合金鑄物のき裂傳ぱ特性 に及ばす熱處理の影響,' 日本機械學會論文集, 55卷, 516號, pp. 1733-1739