• Title/Summary/Keyword: Metal leaching

Search Result 355, Processing Time 0.025 seconds

Environmental Contamination and Bioavailability of Toxic Element around the Daduk Mine Area, Korea (다덕광산 주변지역에서의 독성원소들의 환경오염 및 인체흡수도)

  • ;Ben A Klinck;Yvette Moore
    • Economic and Environmental Geology
    • /
    • v.33 no.4
    • /
    • pp.273-282
    • /
    • 2000
  • In order to investigate the extent and degree of arsenic and heavy metal contamination and the bioavailability of toxic elements around the abandoned mine in Korea, an environmental geochemical survey was undertaken in the Daduk mine. After appropriate preparation, tailings, soil, stream sediment, crop plant and fingernail samples were analysed for As, Cd, Cu, Pb and Zn by ICP-AES and ICP-MS. Elevated levels of 8,782 mg/kg As, 8.3 mg/kg Cd, 489 mg/kg Cu, 3,638 mg/kg Pb and 919 mg/kg Zn were found in tailings from the Daduk mine. These significant concentrations can impact on soils and sediments around the tailing ponds. Mean concentrations of As, Cd, Pb, Cu and Zn in soils are significantly higher than those in world average soil, especially for As and Pb. Element concentrations in sediments decrease with distance from the tailing ponds due to a dilution effect by the mixing of uncontaminated sediments. Arsenic and Cd are elevated in rice grains and stalks, and Cu and Zn concentrations in chinese cabbage, sesame and bean leaves are higher than the upper limit values for normal plant. Arsenic concentration in fingernails of farmers are higher than the normal level with a maximum value of 1.5 mg/kg. The post-ingestion bioavailability of toxic heavy metals in some paddy and farmland soils has been also investigated using the SBET (simple bioavailability extract test) method. The method utilises synthetic leaching fluids closelyanalogous to those of the human stomach. The quantities of As, Cd, Cu, Pb and Zn extracted from paddy soils after 1 hour indicated 15.9, 65.4, 46.2, 39.4 and 29.4% bioavailability, respectively and for farmland soils, 12.4, 26.0, 31.2, 29.3 and 19.4% bioavailability, respectively. The results of the SBET indicate that regular ingestion of soils by the local population could pose a potential health threat due to long-term toxic element exposure.

  • PDF

Characterization of Heavy Metals Bioleaching from Fly Ash by a Sulfur-Oxidizing Bacterium Thiobacillus thiooxidans: Effect of Solid Concentrations (황산화세균 Thiobacillus thiooxidans에 의한 fly ash의 중금속 제거 특성:고형물 농도의 영향)

  • 조경숙;문희선;이인숙
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.2
    • /
    • pp.183-190
    • /
    • 1999
  • The bioleaching of heavy metals from fly ash was performed by Thiobacillus thiooxidans MET isolated from the enrichment culture of an anaerobically digested sludge. The effect of solid concentrations on the efficiency of metal leaching was studied in shaken flasks. In the range of solid concentrations 20 g.L­$^1$to 100 g.L­$^1$T. thiooxidans MET oxidized S$^{0}$ to sulfate without any lag period. The final pH of slurry solution was decreased to below pH 1, and the final oxide-redox potential (ORP) was increased to over 420 mV in the solid concentrations below 100 g.L­$^1$. However, the initial lag period of 4 to 8 days was required to obtain the pH reduction and ORP increase of the slurry solutions in the range of solid concentrations 150 g.L­$^1$to 300 g.L­$^1$. The sulfur oxidation rate of T. thiooxidans MET in 20~100 g.L­$^1$solid concentrations was 0.70~0.75 g-S.L­$^1$ㆍ d­$^1$, but its sulfur oxidation activity was remarkably inhibited with increasing solid concentration over 150 g.L­$^1$. Increasing fly ash solids concentration in the range of solids concentration 20 g.L­$^1$ to 200 g.L­$^1$decreased the removal efficiency of Zn, Cu, Mn, Cr and Pb. The solubilization of heavy metals from fly ash was strongly correlated with the pH value of slurry solution. When the pH of slurry solution was reduced to 3, the solubilization process of Zn, Cu and Mn started, and their solubilization efficiency of Zn, Cu and Mn was progressively increased below pH 2. However, the solubilization process of Cr and Pb started at pH 2.5 and 2.0, respectively.

  • PDF

Characteristic of Flotation for Recovery of Copper from Copper Slag in Kazakhstan (카자흐스탄 구리제련소 슬래그 내 구리회수를 위한 선별 특성)

  • Park, Jayhyun;Choi, Uikyu;Choe, Hongil;Shin, Shunghan
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.12-21
    • /
    • 2015
  • Almost all copper slags contain a considerable amount of Cu (0.5 - 3.7%) close to or even higher than copper ores. A number of methods for metal recovery from copper slag were reported These methods can be classified into three categories, flotation, leaching and roasting. Sulfide flotation method for the recovery of copper from Kazahstan copper furnace slag is discussed in this investigation. 50% of copper from the slag was recovered by sulfide flotation at pH 4. meanwhile 67% of copper from the slag was recovered at pH 11. Higher copper recovery result at pH 11 rather than that at pH 4 was caused by the fact that copper sulfides were floated in particle size fraction over $100{\mu}m$ in concentrates at pH 11. When the slag were ground below $74{\mu}m$by ball milling, the recovery of copper by floation in slag improved to 78 - 83% because of copper liberation effect.

A Study on the Cementation of Cu, Ni and Co Ions with Mn Powders in Chloride Solution (염산용액중에서 망간분말에 의한 구리, 니켈 및 코발트 이온의 세멘테이션에 관한 연구)

  • 안재우;안종관;박경호
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.3-12
    • /
    • 2000
  • A Study on the cementation for the recovery of Cu, Ni and Co with Mn metallic powders in leaching solution from the manganese nodule that have removed Fe ions was studied. The results showed that the recovery efficiencies of metal ions with Mn powders increased when the temperature, pH and the concentration of chloride ions were increased in mixed solution. And the recovery efficiencies of Cu was 98% and not changed with the addition amounts of Mn powders but, in case of Co and Ni, the recovery efficiencies were increased with the addition amounts. The particle size of precipitate was about $5\mu\textrm{m}$. From the results of experiment we proposed the two-step cementation process for the recovery of Cu, Ni and Co with Mn powders.

  • PDF

Production of Fine Cobalt Metal Powders from Superalloy Scrap(1) (Treating Superalloy Scrap with Zinc) (Superalloy 스크랩으로부터 Co 미분말의 제조(1) (Superalloy 스크랩의 아연처리))

  • 박문경;이영근
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.52-59
    • /
    • 1995
  • Treating bulk superalloy scrap with molten zinc has been studled to facililate recycling and recovery- of cobalt.Superalloys investigated were the cobalt-base Mar-M-509 and X45 and the nickel-base Rene 80. Charges withZnlscrap ratlos of 1.5-6.5 were heated to 750-9002 far 1-7.5 hours in a nitrogen atmosphere. The moltenzinc dissolved superalloy scrap and zinc was removed by vacuum distillation at 850-Wk for 4-6 hours. Ithas been concluded that the optimum conditions of decomposition for Mar-M-509 and Rene 80 \"ere dissolutiontemperature of about 850k, Znlscrap ratlo of about 5, and dissalution time of about 5.5 hours. The zinc-treatedsuperalloy prouducts were friable and reacted rapidly with acid solutions. Leaching 9mm pieces of unalloyedMar-M-509 or Rene 80 with 5 times the stolchlometric amount oi 6N HCI at 90t ior 3 hours dissolved about1.5-7.270, while leachmg of the minus 20-mesh products dissolved about 89.0-93.0%.ved about 89.0-93.0%.

  • PDF

Platinum Nanoparticles Synthesis using Recovered Platinum from Waste Fuel cell (폐연료전지(廢燃料電池)스택으로부터 회수(回收)된 백금(白金)의 나노 입자(粒子) 제조(製造))

  • Kim, Young-Ae;Kwon, Hyun-Ji;Koo, Jeong-Boon;Kwak, In-Seob;Sin, Jang-Sik
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.67-73
    • /
    • 2011
  • In this study, for recovery of renewable noble metal from used stack of fuel cell, synthesis of platinum nano particle is established through effect of platinum solution concentration, pH value, reducing agent and dispersing agent at a volume ratio of 1 mM $H_2PtCl_6$:10 mM $NaBH_4$:8 mM Cl4TABr = 1:0.4:0.4(vol.%), pH4, $50^{\circ}C$, 160 rpm and 10min. Less than 5 nm platinum particles were synthesized using Pt leaching solution from used MEA of stack under same condition of method using simulated Pt solution. The characteristics of synthesized nano particles was illustrated by XPS analysis as the reduction of platinum ions into platinum metals(zero-valent).

Review on bioleaching of uranium from low-grade ore (저품위(低品位) 우라늄철(鑛)의 미생물 침출법(浸出法))

  • Patra, A.K.;Pradhan, D.;Kim, D.J.;Ahn, J.G;Yoon, H.S.
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.30-44
    • /
    • 2011
  • This review describes the involvement of different microorganisms for the recovery of uranium from the ore. Mainly Acidithiobacillus forrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans are found to be the most widely used bacteria in the bioleaching process of uranium. The bioleaching of uranium generally follows indirect mechanism in which bacteria provide the ferric iron required to oxidize $U^{4+}$. Commercial applications of bioleaching have been incorporated for extracting valuable metals, due to its favorable process economics and reduced environmental problems compared to conventional metal recovery processes such as smelting. At present the uranium is recovered through main bioleaching techniques employed by heap, dump and in situ leaching. Process development has included recognition of the importance of aeration of bioheaps, and improvements in stirred tank reactor design and operation. Concurrently, knowledge of the key microorganisms involved in these processes has advanced, aided by advances in molecular biology to characterize microbial populations.

The Enhancement of Recycling Processes Efficiency of Lithium Ion Batteries; A Review (리튬이온전지 재활용공정 효율 향상을 위한 공정개선 연구동향)

  • Kyoungkeun Yoo;Wonhwa Heo;Bumchoong Kim
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.24-36
    • /
    • 2024
  • The lithium-ion battery recycling process has been classified into direct recycling, hydrometallurgical process, and pyrometallurgical process. The commercial process based on the hydrometallurgical process produces black mass through pretreatment processes consisting of dismantling, crushing and grinding, heat treatment, and beneficiation, and then each metal is recovered by hydrometallurgical processes. Since all lithium-ion battery recycling processes under development conducts hydrometallurgical processes such as leaching, after the pretreatment process, to produce precursor raw materials, this article suggests a classification method according to the pretreatment method of the recycling process. The processes contain sulfation roasting, carbothermic reduction roasting, and alloy manufacturing, and the economic feasibility of the lithium-ion battery recycling process can be enhanced using unused by-products in the pretreatment process.

Depth profiles and the behavior of heavy metal atoms contained in the soil around a Il-Kwang disused mine in Kyung Nam (경남 일광 폐광 부근 토양에 함유된 중금속의 깊이별 분포와 거동)

  • Jeong, Jong Hak;Song, Hyun Jung;Jeong, Gi Ho
    • Analytical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.105-113
    • /
    • 1997
  • We investigated the content of heavy metals contained in the soil at an Il-Kwang disused mine in Kyung Nam. Three sampling points were selected, each point was digged to 210 or 240cm, sampled each 30cm depth. After air drying, each sample was digested in aqua regia and then analyzed with an Inductively Coupled Plasma Atomic Emission Spectrometer. We determined the content of Zn, Pb, Cr, Cd, Cu, Mn, and Fe, maximum content of Pb, Cd, and Zn was observed to $(4.6{\pm}0.1){\times}10^3$, 9.4(${\pm}3.6$), and $(2.7{\pm}0.1){\times}10^2{\mu}g/g$ respectively. Mean pH values of soil sampled at No.1, 2, and 3 regions were 3.2, 2.6, and 2.8, respectively. These values are remarkably lower than pH of the conventional standard soil which usually shows pH level around 4.9. At each sampling point, maximum content of heavy metals was observed from 30cm to 60cm depth. The depth profiles of Zn, Cd, Pb, and Cr showed very similar tendencies to each other, but those of Fe, Cu. and Mn showed different tendencies to former ones.

  • PDF

Waste Recycling Through Biological Route (생물학적(生物學的) 방법(方法)에 의한 폐기물(廢棄物)의 재활용(再活用))

  • Pradhan, Debabrata;Kim, Dong-Jin;Ahn, Jong-Gwan;Park, Kyung-Ho;Lee, Seoung-Won
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.3-15
    • /
    • 2008
  • Different toxic wastes are disposed of in our surroundings and these will ultimately threaten the existence of living organisms. Biohydrometallurgy, which includes the processes of bioleaching and bioremediation through the activities of microorganisms such as bacterial or fungal species, is a technology that has the potential to overcome many environmental problems at a reasonable economic cost. Bioleaching were carried out for dissolution of metals from different materials using most important metal mobilizing bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Laptospirillum ferrooxidans. According to the reaction, bioleaching is parted as direct and indirect mechanism. In direct mechanism the bacteria oxidize the sulphides minerals by accepting electron and producing sulphuric acid in leaching media for their growth and metabolism. In other hand the indirect bioleaching is demonstrated as the oxidation of sulphides mineral by the oxidant like $Fe^{3+}$ produced by the iron oxidizing bacteria. Through this process, substantial amount of metal can be recovered from low-grade ores, concentrates, industrial wastes like sludge, tailings, fly ash, slag, electronic scrap, spent batteries and spent catalysts. This may be alternative technology to solve the high deposition of waste, which moves toward a healthy environment and green world.