• Title/Summary/Keyword: Metal ions

Search Result 2,103, Processing Time 0.029 seconds

Synthesis of Diazacrown Ethers Containing Phenolic Side Arms and Their Complex with Divalent Metal Ions

  • Chi, Ki-Whan;Ahn, Yoon-Soo;Shim, Kwang-Taeg;Huh, Hwang;Ahn, Jeong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.688-692
    • /
    • 2002
  • The aminomethylation of phenols with para-substituents by the Mannich reaction has successfully been accomplished to produce the Mannich bases 2-6. The compounds 7-8 have also been synthesized in order to identify the effect of the side arms and t he macrocycle in the complex formation. Protonation constants and stability constants of the double armed diaza-18-crown-6 ethers 2-7 with metal ions have been determined by potentiometric method at 25 $^{\circ}C$ in 95 % methanol solution. Under a basic condition (pH > 8.0), the double-armed crown ethers 2-6 revealed stronger interaction with divalent metal ions than the simple diazacrown ether 1. The stability constants with these metal ions were Co 2+ < Ni2+ < Cu2+ > Zn 2+ in increasing order, which are in accordance with the order of the Williams-Irving series. The stability constants with alkali earth metal ions were Ca 2+ < Sr 2+ < Ba 2+ in increasing order, which may be explained by the concept of size effect. It is noteworthy that the hosts 2-6, which have phenolic side arms and a macrocycle, bind stronger with metal ions than the hosts 1 and 7. On the other hand, the host 8, which has phenolic side arms with a pyperazine ring,provided comparable stability constants to those with the host 3. These facts demonstrate that phenolic side arms play a more important role than the azacrown ether ring in the process of making a complex with metal ions especially in a basic condition. In particular, the log KML values for complexation of divalent metal ions with the hosts 2-6 had the sequence, i.e., 2 (R=OCH3) < 3 (R=CH3) < 4 (R=H) < 5 (R=Cl) < 6 (R=CF3). The stability constants of the hosts 5 and 6 containing an electron-withdrawing group are larger than those of the hosts 2 and 3 containing an electron-donating group. This substituent effect is attributed to the solvent effect in which the aryl oxide with an electron-donating group has a tendency to be tied strongly with protic solvents.

Adsorption Characteristics of Al (III), Ni (II), Sm (III) Ions on Resin with Styrene Hazardous Material in Reinforcement Water Fire Extinguishing Agent

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.151-157
    • /
    • 2013
  • The ion exchange resins were synthesized from 1-aza-18-crown-6 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous material) divinylbenzene (DVB) copolymer with crosslinks of 1%, 6%, and 15% by substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, surface area, and IR-spectrum. The object of this study was to seperate the metal ion absorbed in reinforcement water fire extinguishing agent. As the results of the effects of pH, equilibrium arrival time, and crosslink of synthetic resin on metal ion adsorption for resin adsorbent, the metal ions were showed high adsorption at pH 3 or over and adsorption equilibrium of metal ions was about 2 hours. In addition, adsorption selectivity for the resin in water was the order of Al (III) > Ni (II) > Sm (III) ions, adsorbability of the metal ions was in the crosslinks order of 1%, 6%, and 15%.

Study on Adsorption of Heavy Metal tons by Cheju Scoria (제주 송이(Scoria)를 이용한 중금속 흡착에 관한 연구)

  • 이민규;서근학
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.195-201
    • /
    • 1996
  • This study was conducted for the efficient utilization of a scoria, which is abundantly found in Cheju island, as adsorbent and the scoria was examined for its performance in clarification of adsorption of heavy metal ions. The order in heavy metal ions adsorbed on scoria was; Pb+>Cd^{2+}$>Cu^{2+}$>Ag^+$>Co^{2+}$>Zn^{2+}$>Cr^{3+}$>Cr^{6+}$. This tendency was relatively consistent with the decreasing order of radius of hydrated metal ion. Also, the smaller scoria size and the larger amounts of scoria showed higher removal efficiency for heavy metal ions. The same scoria size showed more effective removal efficiency for heavy metal ions at lower initial concentration than at higher initial concentration. The adsorption abilities of original scoria and chemically treated scoria were compared. Adsorption isotherm of scoria was generally obeyed to Freundlich formula than langmuir formula and Freundlich constant, than was obtained in the range of 0.2~0.4.

  • PDF

Mode of Cell Death and Molecular Change of Oral Squamous Carcinoma Cells Exposed to Metal Ions

  • Kim, Hyung-Il;Baek, Chang-Jun;Kim, In-Ryoung;Kim, Hyung-Keun;Park, Hae-Ryoun
    • International Journal of Oral Biology
    • /
    • v.31 no.1
    • /
    • pp.15-20
    • /
    • 2006
  • Concerns remain regarding the biocompatibility and adverse effects of dental casting alloys. The aim of this study was to understand the cytopathogenic effect of metal ions, which might be released from dental alloys, on oral squamous carcinoma(OSC) cells. The cellular morphology, viability, the type of cell death and molecular change in response to metal ion salt solutions including aluminum(Al), cobalt(Co), copper(Cu) and nickel(Ni) were examined. The $TC_{50}$ values for the metal ions with the exception of AI were estimated to be between 400 and $600{\mu}M$. The cells treated with the metal ions showed apoptotic change with the exception of Al ions. Metal ion-induced apoptosis was further confirmed using flow cytometric analysis. This study showed that the cytotoxicity and the mode of cell death by metal ions clearly depend on the cell type, the type of metal ion and the duration of exposure. The protein level of Rb, a tumor suppressor that affects apoptosis para-doxically, was higher in the cells treated with Co, Cu and Ni. It is believed that apoptosis and cell damage in the OSC cells treated with Co, Cu or Ni can be evoked by the regulation of Rb.

Adsorption Characteristics of Multi-Metal Ions by Red Mud, Zeolite, Limestone, and Oyster Shell

  • Shin, Woo-Seok;Kang, Ku;Kim, Young-Kee
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • In this study, the performances of various adsorbents-red mud, zeolite, limestone, and oyster shell-were investigated for the adsorption of multi-metal ions ($Cr^{3+}$, $Ni^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $As^{3+}$, $Cd^{2+}$, and $Pb^{2+}$) from aqueous solutions. The result of scanning electron microscopy analyses indicated that the some metal ions were adsorbed onto the surface of the media. Moreover, Fourier transform infrared spectroscopy analysis showed that the Si(Al)-O bond (red mud and zeolite) and C-O bond (limestone and oyster shell) might be involved in heavy metal adsorption. The changes in the pH of the aqueous solutions upon applying adsorbents were investigated and the adsorption kinetics of the metal ions on different adsorbents were simulated by pseudo-first-order and pseudo-second-order models. The sorption process was relatively fast and equilibrium was reached after about 60 min of contact (except for $As^{3+}$). From the maximum capacity of the adsorption kinetic model, the removal of $Pb^{2+}$ and $Cu^{2+}$ were higher than for the other metal ions. Meanwhile, the reaction rate constants ($k_{1,2}$) indicated the slowest sorption in $As^{3+}$. The adsorption mechanisms of heavy metal ions were not only surface adsorption and ion exchange, but also surface precipitation. Based on the metal ions' adsorption efficiencies, red mud was found to be the most efficient of all the tested adsorbents. In addition, impurities in seawater did not lead to a significant decrease in the adsorption performance. It is concluded that red mud is a more economic high-performance alternative than the other tested adsorption materials for applying a removal of multi-metal in seawater.

A Measure of Chemical Carcinogenic Activity for Metal Ions (금속이온에 대한 화학발암성의 척도)

  • Byung-Kak Park;Hwhan-Jin Yeo
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.341-347
    • /
    • 1985
  • Formation of metal complex is the first step in the many biological actions of metal ions present in the biological systems. In this work the not electron affinity necessary for the formation of such metal complexes has been determined for a series of metal ions. It has been found that excess polarizing strength can be adopted as a measure of electron affinity and trend is the excess polarizing strength is related to Irving-Williams series. Those metal ions having greater than 0.22 in value of excess polarizing strength have been found to show carcinogenicity and other metal ions, which are supposed to be carcinogenic, have shows to have greater than 0. 22 in value of excess polarizing strength, demonstrating that excess polarizing strength could be used to determine if any metal ion possesses carcinogenic activity.

  • PDF

Effect of Metals on Anti-Oxidase Activity and Isozyme patterns in Brassica juncea

  • Jeong, Hyung-Jin;Lee, In-Jung;Sung, Mi-Hyang
    • Korean Journal of Plant Resources
    • /
    • v.10 no.3
    • /
    • pp.235-240
    • /
    • 1997
  • To study the effects of metal ions on the activity of anti-oxidase enzymes, the activity of superoxide dismutase (SOD) and peroxidase (POD) and isozyme patterns of Brassica juncea have been studied after treating with CD, Cu, Zn, and Al. The activity of SOD after treating with metal ions was higher than that of untreated control. SOD activity in leaves increased by treatment of 50 ppm of Zn and 500 ppm of Al. POD in stems gave highest activity after treating with 500 ppm of Cu. When the activity was compared by plant parts, lowest POD activity was observed in leaves in which protein content was higher than other tissues. When the activity was expressed as percentage of control, SOD activity was increased after treating with metal ions. SOD activity in leaves and roots of metal treated plant was significantly increased under the metal ions stress conditions. In the roots of 50 ppm of Zn treated plant, SOD activity was extremly high. POD activity was inhibited with Cd and Zn treatment in all parts of the plant. However, in leaves and stems, there was marked increase in activity after treating with Cu. The patterns of SOD isozyme after metal treatment show that two bands were stained in all metal ion treated and that no new band appeared. POD isozyme band intensity resulting from the treatment of metal ions was in order of roots > stems > leaves, but there was no significant difference.

  • PDF

Adsorption Behaviors of Transition Metal Ions Using the Poly(N,N'-bispalmitoyl-1, 12-diaza-3, 4;9,10-dibenzo-5,8-cyclopentadecane) in Aqueous Solution (수용액에서 Poly(N,N'-bispalmitoyl-1, 12-diaza-3, 4;9,10-dibenzo-5,8-cyclopentadecane)를 이용한 전이금속이온들의 흡착특성)

  • Shin, Young-Kook;Kwon, Soo Han;Kim, Hae Joong
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.406-410
    • /
    • 1996
  • The adsorption behaviors of transition metal ions on the poly(N,N'-bispalmitoyl-1, 12-diaza-3, 4;9,10-dibenzo-5,8-cyclopentadecane) has been determined by adsorption process in aqueous solution. The order of concentration factor(CF) and the amount of adsorption were Cu(II)

  • PDF

The Egect of Heavy Metal tons on the Differentiation of Cultured Muscle Cells of Chick Embryo (배양계배 근세포의 분화과정에 미치는 중금속 이온의 영향)

  • 위인선;이종빈
    • The Korean Journal of Zoology
    • /
    • v.30 no.4
    • /
    • pp.410-416
    • /
    • 1987
  • The effect of heavy metal ions on the synthesis of proteins in cultured chick embryonic muscle cells were examined by labeling the cellular proteins with 35S-methionine and the surface proteins with Nalssl and lactoperokidase. The protein pattern in the cells cultured for 48 hrs showed little or no difference whether or not the cells were treated with any of the metal ions including Cu2+, Cd2+ and Hg2+, which are known to block the fusion of mypblasts. However, a 43kd protein disappeared from the control cells cultured for 72 hrs but remained unchanged in the cells treated with the metal ions. When analyzed for the syntheiic pattern of membrane proteins, addition of the ions (particularly of Cda+ and Cr3+) caused a marked increase in the level of 66kd protein, as compared to that in the untreated cells. By contrast, the level of 29kd protein was much higher in the control cells than in the cells treated with the metal ions. These results suggest that the heavy metal ions appear to block the degradation of 43kd soluble protein and 66kd membrane protein, perhaps by inhibiting a metalloprotease, which may be essential for the myogenic process of embryonic muscle cells.

  • PDF

Adsorptive and kinetic studies of toxic metal ions from contaminated water by functionalized silica

  • Kumar, Rajesh;Verma, Sunita;Harwani, Geeta;Patidar, Deepesh;Mishra, Sanjit
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.227-233
    • /
    • 2022
  • The objective of the study, to develop adsorbent based purifier for removal of radiological and nuclear contaminants from contaminated water. In this regard, 3-aminopropyl silica functionalized with ethylenediamine tetraacetic acid (APS-EDTA) adsorbent prepared and characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Prepared APS-EDTA used for adsorptive studies of Cs(I), Co(II), Sr(II), Ni(II) and Cd(II) from contaminated water. The effect on adsorption of various parameters viz. contact time, initial concentration of metal ions and pH were also analyzed. The batch method has been employed using metal ions in solution from 1000-10000 ㎍/L, contact time 5-60 min., pH 4-10 and material quantities 50-200 mg at room temperature. The obtained adsorption data were used for drawing Freundlich and Langmuir isotherms model and both models were found suitable for explaining the metal ions adsorption on APS-EDTA. The adsorption data were followed pseudo second order reaction kinetics. The maximum adsorption capacity obtained 1.3037-1.4974 mg/g for above said metal ions. The results show that APS-EDTA have great potential to remove Cd(II), Co(II), Cs(I), Ni(II) and Sr(II) from aqueous solutions through chemisorption and physio-sorption.