• Title/Summary/Keyword: Metal hydrides

Search Result 53, Processing Time 0.026 seconds

Heat Storage and Utilization System Using Metal Hydride (수소저항합금을 사용한 열저장 및 이용시스템 연구)

  • Sim, K.S.;Han, S.D.;Kim, J.W.;Myung, K.S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.169-175
    • /
    • 1998
  • Metal hydrides can be used for the purpose of heat storage and transportation from the industrial complex which own recoverable waste heats to the neighboring cities by the medium of hydrogen. The properties of metal hydrides, some problems of heat transportation using metal hydrides, and the example of heat transportation system were discussed.

  • PDF

A Study on Performance Characteristics of Ti-Zr Type Metal Hydrides and Hydrogen Storage Cylinders with the Hydrides (Ti-Zr계 금속수소화물 및 수소저장실린더의 성능특성 연구)

  • Kim, Ki-Youl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.519-526
    • /
    • 2012
  • Recently fuel cell is considered to be a new technology that can substitute the ICE(Internal Combustion Engine) as well as overcome environmental issues. In military applications, fuel cell has an unique advantages, which are quietness, namely, stealth. The environmental requirement such as shock and vibration in military application, however, is very severe comparing to civilian demand. Especially, the safety concerning hydrogen storage is the most important problem. Among the candidate methods to store hydrogen, the metal hydride storage is promising method owing to the storage mechanism of chemical absorption of hydrogen to metal hydrides. In this study, the new composition of Ti-Zr type metal hydride(A composition) was suggested and investigated to increase the hydrogen storage capacity. For comparison, the hydrogen charge-discharge properties were investigated with the commercialized Ti-Zr type metal hydride(B composition) using PCT(Pressure-Composition-Temperature) measurement. Also two hydrogen storage cylinders were loaded with each metal hydride and their hydrogen charging and discharging characteristics were investigated. As a result, it was found that the new Ti-Zr type metal hydride has a slightly higher hydrogen storage capacity compared to commercial Ti-Zr type metal hydride.

Advances in the Technology of Solid State Hydrogen Storage Methods Using Novel Nanostructured Materials (나노구조물질을 이용한 고체수소저장 기술 동향)

  • Zacharia, Renju;Kim, Keun Young;Nahm, Kee Suk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.439-451
    • /
    • 2005
  • This article provides a panoramic overview of the state-of-the-art technologies in the field of solid-state hydrogen storage methods. The emerging solid-state hydrogen storage techniques, such as nanostructured carbon materials, metal organic framework (MOFs), metal and inter-metal hydrides, clathrate hydrates, complex chemical hydride are discussed. The hydrogen storage capacity of the solid-sate hydrogen storage materials increases in proportion to the surface area of the solid materials. Also, it is believed that new functional nanostructured materials will offer far-reaching solutions to the development of on-board hydrogen storage system for the application of the transportation vehicles.

A Comparison of the Leaving Group Ability of Transition Metal Carbonyl Anions vs. Halides : Reaction of $MH^-$ with M'-R $(MH^-\;=\;HW(CO)_4\;-P(OMe)_3\;^-,\;HW(CO)_5\;^-,\;HCr(CO)_5\;^-,\;HFe(CO)_4\;^-;\;M'-R=CpMo(CO)_3(CH_3),\;CpMo(CO)_3{CH_2CH(CH_2)_2})$

  • Yong Kwang Park;Seon Joong Kim;Carlton Ash
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.109-114
    • /
    • 1990
  • The anionic transition metal hydrides $(HW(CO)_4P(OMe)_3\;^-,\;HW(CO)_5\;^-,\;HCr(CO)_5\;^-,\;HFe(CO)_4\;^-)$ react with transition metal alkyl $(CpMo(CO)_3(CH_3)$ to yield $CH_4\;and\;CH_3CHO$ in addition to the inorganic products $(CpMo(Co)_3\;^-$, etc.). The reaction of these anionic metal hydrides with CpMo(CO)3{CH2CH(CH2)2} may lead to an elucidation of the reaction mechanisms involved; the organic product distributions are among $CH_4,\;CH_2\;=\;CHCH_2CH_3$, and $CH_3CH(CH_2)_2$, depending upon the anionic metal hydride used. These anionic metal hydrides also are reported to undergo a hydride-halide exchange reaction with organic halides; therefore, these similar reactions have been compared in terms of leaving group ability $(CpMo(CO)_3\;^-\;vs.\;Br^-)$ and the mechanistic pathways.

나노구조물질을 이용한 수소저장 기술개발 동향

  • Kim, Geun-Yeong;Zachari, Renju;Nam, Gi-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.84-91
    • /
    • 2005
  • 수소저장기술은 수소경제를 달성하기 위해 개발해야할 핵실요소기술이다. 이 논문에서는 고체수소저장기술의 최신 개발 동향을 고찰하였다. 나노구조 탄소계 물질(nanostructured carbon materials), 유기금속구조물(metal organic framework, MOFs), 금속수소화물(metal hydrides), 클래스레이트수화물(clathrate hydrates), 금속착수소화물(complex chemical hydrides)과 같은 고체수소저장매체를 중점적으로 고찰하였다. 그 결과 지금까지 개발된 고체수소저장재료의 수소저장용량은 고체의 표면적에 비례하여 증가함을 알 수 있었다. 탄소나노튜브의 수소저장 메커니즘을 연구하여 탄소나노튜브의 표면적이 수소저장량을 증가시키는데 중요한 인자로 작용함을 알 수 있었다.

  • PDF

Trend in Research and Development of Lithium Complex Hydrides for Hydrogen Storage (리튬계 수소저장재료의 연구개발 동향)

  • Shim, Jae-Dong;Shim, Jae-Hyeok;Ha, Heon-Phil
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.159-167
    • /
    • 2012
  • Hydrogen is in the spotlight as an alternative next generation energy source for the replacement of fossil fuels because it has high specific energy density and emits almost no pollution, with zero $CO_2$ emission. In order to use hydrogen safely, reliable storage and transportation methods are required. Recently, solid hydrogen storage systems using metal hydrides have been under extensive development for application to fuel cell vehicles and fuel cells of MCFC and SOFC. For the practical use of hydrogen on a commercial basis, hydrogen storage materials should satisfy several requirements such as 1) hydrogen storage capacity of more than 6.5wt.% $H_2$, moderate hydrogen release temperature below $100^{\circ}C$, 3) cyclic reversibility of hydrogen absorption/desorption, 4) non toxicity and low price. Among the candidate materials, Li based metal hydrides are known to be promising materials with high practical potential in view of the above requirements. This paper reviews the characteristics and recent R&D trends of Li based complex hydrides, Li-alanates, Li-borohydrides, and Li-amides/imides.

Selective Reduction of Carbonyl and Epoxy Compounds Using Aluminum, Boron and Other Metal Reagents. Comparison of Reducing Characteristics between the Meerwein-Ponndorf-Verley Type Reduction and Metal Complex Hydrides Reduction: A Review

  • Cha, Jin-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2162-2190
    • /
    • 2007
  • The newly-developed Meerwein-Ponndorf-Verley (MVP) type reagents using aluminum, boron and other metals for reduction of organic functional groups such as carbonyl and epoxy compounds have been surveyed. highlighted and reviewed in this account are the appearance of new MPV type reagents and their application to the selective reduction of organic functions. Finally, this account emphasizes the distinct contrast in the reducing characteristics existed between metal hydride reagents and MPV reagents, and compares their usefulness in organic synthesis.

Study on the Characteristics of Hydrogen Storage according to the Structure of Storage Tank using Metal Hydride (수소저장합금을 이용한 수소저장탱크의 구조에 따른 수소저장 특성 연구)

  • Sim, Kyu-Sung;Myung, Kwang-Sik;Kim, Jung-Duk;Kim, Jong-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.90-99
    • /
    • 2002
  • In order to utilize hydrogen energy in a large-scale in the future, development of effective hydrogen storage method is essentially required as well as that of efficient hydrogen production method. The hydrogen storage method using metal hydrides has been holding the spotlight as a safer and higher-density hydrogen storage method than conventional hydrogen storage methods such as liquid hydrogen or compressed hydrogen storage method. However when metals react with hydrogen to store hydrogen as metal hydrides, they undergo exothermic reactions, while metal hydrides evolve hydrogen by endothermic reaction. Therefore, hydrogen storage tank should have such structure that it can absorb or release reaction heat rapidly and efficiently. In this study, a review on the improvement of the heat release and absorption structure in the hydrogen storage tank was conducted, and as a result, a new type of hydrogen storage tank with the structure of vertical-type wall was designed and manufactured. Experimental results showed that this new type of tank could be used as an efficient hydrogen storage tank because its structure is simpler and manufacture is easier than cup-type hydrogen storage tank with the structure of packed horizontal cup.

The Bonding of Interstitial Hydrogen in the NiTi Intermetallic Compound

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2045-2050
    • /
    • 2006
  • The interstitial hydrogen bonding in NiTi solid and its effect on the metal-to-metal bond is investigated by means of the EH tight-binding method. Electronic structures of octahedral clusters $Ti_4Ni_2$ with and without hydrogen in their centers are also calculated using the cluster model. The metal d states that interact with H 1s are mainly metal-metal bonding. The metal-metal bond strength is diminished as the new metal-hydrogen bond is formed. The causes of this bond weakening are analyzed in detail.