• Title/Summary/Keyword: Metal film

Search Result 2,176, Processing Time 0.035 seconds

Flexible ITO/PEDOT:PSS Hybrid Transparent Conducting Electrode for Organic Photovoltaics

  • Lim, Kyounga;Jung, Sunghoon;Kang, Jae-Wook;Kim, Jong-Kuk;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.299-299
    • /
    • 2013
  • Indium Tin Oxide (ITO) has widely been used as a transparent conductive oxide (TCE) for photovoltaic devices. Lately, flexibility of ITO becomes an issue as demand of flexible device increases. Several scientists have tried to substitute ITO to different materials such as conductive polymer, graphene, CNT, and metal nanowire because of ITO brittleness. Among the substitute materials, PEDOT:PSS has mostly paid attention because PEDOT:PSS has excellent flexibility and good conductivity. The conductivity of PEDOT:PSS increases up to 1000 S/cm with additives such as DMSO, EG, sorbitol, and so on. In our research group, we introduce a conductive polymer PEDOT:PSS as a buffer layer to improve not only flexibility but also conductivity. As PEDOT:PSS layer forms beneath ITO thin film (20 nm), sheet resistance decreases from $230{\Omega}$/${\Box}$ to $85{\Omega}$/${\Box}$ and crack initiation decreases from 4.5 mm to 3.5 mm as well. We have fabricated organic photovoltaic device and power conversion efficiencies using conventional ITO electrode and ITO/PEDOT:PSS hybrid electrode. The photovoltaic property such as power conversion efficiency for ITO/PEDOT:PSS hybrid electrode is comparable to the value obtained using conventional ITO electrode on glass substrate.

  • PDF

Etch Characteristics of MgO Thin Films in Cl2/Ar, CH3OH/Ar, and CH4/Ar Plasmas

  • Lee, Il Hoon;Lee, Tea Young;Chung, Chee Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.387-387
    • /
    • 2013
  • Currently, the flash memory and the dynamic random access memory (DRAM) have been used in a variety of applications. However, the downsizing of devices and the increasing density of recording medias are now in progress. So there are many demands for development of new semiconductor memory for next generation. Magnetic random access memory (MRAM) is one of the prospective semiconductor memories with excellent features including non-volatility, fast access time, unlimited read/write endurance, low operating voltage, and high storage density. MRAM is composed of magnetic tunnel junction (MTJ) stack and complementary metal-oxide semiconductor (CMOS). The MTJ stack consists of various magnetic materials, metals, and a tunneling barrier layer. Recently, MgO thin films have attracted a great attention as the prominent candidates for a tunneling barrier layer in the MTJ stack instead of the conventional Al2O3 films, because it has low Gibbs energy, low dielectric constant and high tunneling magnetoresistance value. For the successful etching of high density MRAM, the etching characteristics of MgO thin films as a tunneling barrier layer should be developed. In this study, the etch characteristics of MgO thin films have been investigated in various gas mixes using an inductively coupled plasma reactive ion etching (ICPRIE). The Cl2/Ar, CH3OH/Ar, and CH4/Ar gas mix were employed to find an optimized etching gas for MgO thin film etching. TiN thin films were employed as a hard mask to increase the etch selectivity. The etch rates were obtained using surface profilometer and etch profiles were observed by using the field emission scanning electron microscopy (FESEM).

  • PDF

A Study on the Development of Compactability and Electrical Resistivity for P/M Fecralloy (P/M Fecralloy의 성형성 및 전기저항특성 향상에 관한 연구)

  • Park, Jin-Woo;Ko, Byung-Hyun;Jung, Woo-Young;Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.426-431
    • /
    • 2016
  • The Fe-Cr-Al alloy system shows an excellent heat resistance because of the formation of an $Al_2O_3$ film on the metal surface in an oxidizing atmosphere at high temperatures up to $1400^{\circ}C$. The Fecralloy needs an additive that can act as a binder because of its bad compactability. In this study, the green compacts of STS434L and Al powder added to Fecralloy are oxidized at $950^{\circ}C$ for up to 210 h. Fecralloy and Al is mixed by two types of ball milling. One is vented to air and the other was performed in a sealed jar. In the case of Al addition, there are no significant changes in the electrical resistance. Before the oxidation test, Al oxides are present in the Fecralloy surface, as determined from the energy dispersive spectroscopy results. The addition of Al improves the compactability because of an increased density, and the addition of STS434L increases the electrical resistivity by forming a composite oxide.

Effect of pH in Sodium Periodate based Slurry on Ru CMP (Sodium Periodate 기반 Slurry의 pH 변화가 Ru CMP에 미치는 영향)

  • Kim, In-Kwon;Cho, Byung-Gwun;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.117-117
    • /
    • 2008
  • In MIM capacitor, poly-Si bottom electrode is replaced with metal bottom electrode. Noble metals can be used as bottom electrodes of capacitors because they have high work function and remain conductive in highly oxidizing conditions. In addition, they are chemically very stable. Among novel metals, Ru (ruthenium) has been suggested as an alternative bottom electrode due to its excellent electrical performance, including a low leakage of current and compatibility to high dielectric constant materials. Chemical mechanical planarization (CMP) process has been suggested to planarize and isolate the bottom electrode. Even though there is a great need for development of Ru CMP slurry, few studies have been carried out due to noble properties of Ru against chemicals. In the organic chemistry literature, periodate ion ($IO_4^-$) is a well-known oxidant. It has been reported that sodium periodate ($NaIO_4$) can form $RuO_4$ from hydrated ruthenic oxide ($RuO_2{\cdot}nH_2O$). $NaIO_4$ exist as various species in an aqueous solution as a function of pH. Also, the removal mechanism of Ru depends on solution of pH. In this research, the static etch rate, passivation film thickness and wettability were measured as a function of slurry pH. The electrochemical analysis was investigated as a function of pH. To evaluate the effect of pH on polishing behavior, removal rate was investigated as a function of pH by using patterned and unpatterned wafers.

  • PDF

A Study on the Characteristics of NbOx Thin Film at Various Frequencies of Pulsed DC Sputtering by In-Line Sputter System (인라인 스퍼터 시스템을 이용한 펄스의 주파수 변화에 따른 NbOx 박막 특성에 관한 연구)

  • Eom, Jimi;Oh, Hyungon;Kwon, Sang Jik;Park, Jung Chul;Cho, Eou Sik;Cho, Il Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.44-48
    • /
    • 2013
  • Niobium oxide($Nb_2O_5$) films were deposited on p-type Si wafers at room temperature using in-line pulsed-DC magnetron sputtering system with various frequencies. The different duty ratios were obtained by varying the frequency of pulsed DC power from 100 to 300 kHz at the fixed reverse time of $1.5{\mu}s$. From the thickness of the sputtered $NbO_x$ films, it was possible to obtain much higher deposition rate in case of pulsed-DC sputtering than RF sputtering. However, the similar leakage currents and structural characteristics were obtained from the metal-insulator-semiconductor(MIS) structure fabricated with the $NbO_x$ films and the x-ray photoelectron spectroscopy(XPS) results in spite of the different deposition rates. From the experimental results, the $NbO_x$ films sputtered by pulsed-DC sputtering are expected to be used in the fabrication process instead of RF sputtering.

The Etching Mechanism of $CeO_2$ Thin Films using Inductively Coupled Plasma (유도 결합 플라즈마를 이용한 $CeO_2$ 박막의 식각 메카니즘)

  • 오창석;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.695-699
    • /
    • 2001
  • Cerium dioxide (CeO$_2$) was used as the intermediate layer between the ferroelectric thin film and Si substrate in a metal-ferroelectric-semiconductor field effect transistor (MFSFET), to improve the interface property by preventing the interdiffusion of the ferroelectric material and the Si substrate. In this study, CeO$_2$ thin films were etched with a CF$_4$/Ar gas combination in inductively coupled plasma (ICP). The maximum etch rate of CeO$_2$ thin films was 270$\AA$/min under CF$_4$/(CF$_4$+Ar) of 0.2, 600 W/-200V, 15 mTorr, and $25^{\circ}C$. The selectivities of CeO$_2$ to PR and SBT were 0.21, 0.25, respectively. The surface reaction in the etching of CeO$_2$ thin films was investigated with x-ray photoelectron spectroscopy (XPS). There is a chemical reaction between Ce and F. Compounds such as Ce-F$_{x}$ remains on the surface of CeO$_2$ thin films. Those products can be removed by Ar ion bombardment. The results of secondary ion mass spectrometry (SIMS) were consistent with those of XPS. Scanning electron microscopy (SEM) was used to examine etched profiles of CeO$_2$ thin films. The etch profile of over-etched CeO$_2$ films with the 0.5${\mu}{\textrm}{m}$ line was approximately 65$^{\circ}$.>.

  • PDF

A Study on the Structure and Electrical Properties of CeO$_2$ Thin Film (CeO$_2$ 박막의 구조적, 전기적 특성 연구)

  • 최석원;김성훈;김성훈;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.469-472
    • /
    • 1999
  • CeO$_2$ thin films have used in wide applications such as SOI, buffer layer, antirflection coating, and gate dielectric layer. CeO$_2$takes one of the cubic system of fluorite structure and shows similar lattice constant (a=0.541nm) to silicon (a=0.543nm). We investigated CeO$_2$films as buffer layer material for nonvolatile memory device application of a single transistor. Aiming at the single transistor FRAM device with a gate region configuration of PZT/CeO$_2$ /P-Si , this paper focused on CeO$_2$-Si interface properties. CeO$_2$ films were grown on P-type Si(100) substrates by 13.56MHz RF magnetron sputtering system using a 2 inch Ce metal target. To characterize the CeO$_2$ films, we employed an XRD, AFM, C-V, and I-V for structural, surface morphological, and electrical property investigations, respectively. This paper demonstrates the best lattice mismatch as low as 0.2 % and average surface roughness down to 6.8 $\AA$. MIS structure of CeO$_2$ shows that breakdown electric field of 1.2 MV/cm, dielectric constant around 13.6 at growth temperature of 200 $^{\circ}C$, and interface state densities as low as 1.84$\times$10$^{11}$ cm $^{-1}$ eV$^{-1}$ . We probes the material properties of CeO$_2$ films for a buffer layer of FRAM applications.

  • PDF

Etching Mechanism Of Bi4-xEuxTiO12 (BET) Thin films Using Ar/CF4 Inductively Coupled Plasma (Ar/CF4 유도결합 플라즈마를 이용한 BET 박막의 식각 메카니즘)

  • 임규태;김경태;김동표;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.298-303
    • /
    • 2003
  • Bi$_4$-$_{x}$EU$_{x}$Ti$_3$O$_{12}$ (BET) thin films were etched by inductively coupled CF$_4$/Ar plasma. We obtained the maximum etch rate of 78 nm/min at the gas mixing ratio of CF$_4$(10%)/Ar(90%). The variation of volume density for F and Ar atoms are measured by the optical emission spectroscopy. As CF$_4$increased in CF$_4$/Ar plasma, the emission intensities of F increase, but Ar atoms decrease, which confirms our suggestion that emission intensity is proportional to the volume density of atoms. From X-ray photoelectron spectroscopy, the intensities of the Bi-O, the Eu-O and the Ti-O peaks are changed. By pure Ar plasma, intensity peak of the oxygen-metal (O-M : TiO$_2$, Bi$_2$O$_3$, Eu$_2$O$_3$) bond was seemed to disappear while the intensity of pure oxygen peak showed an opposite tendency. After the BET thin films was etched by CF$_4$/Ar plasma, the peak intensity of O-M bond increase slowly, but more quickly than that of peak belonged to pure oxygen atoms due to the decrease of Ar ion bombardment. Scanning electron microscopy was used to investigate etching Profile. The Profile of etched BET thin film was over 85$^{\circ}$./TEX>.

Optical Characteristics of Plasmonic Nano-structure Using Polystyrene Nano-beads (폴리스티렌 나노 비드를 이용한 플라즈모닉 나노 구조체의 광학 특성)

  • Kim, Doo Gun;Jung, Byung Gue;Kim, Hong-Seung;Kim, Tae-Ryong;Kim, Seon-Hoon;Ki, Hyun-Chul;Kim, Tae-Un;Shin, Jae Cheol;Choi, Young-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.244-248
    • /
    • 2015
  • We proposed and demonstrated the double layered metallic nano-hole structure using polystyrene beads process to enhance the sensitivity of surface plasmon resonance (SPR). The double layered SPR structures are calculated using the finite-difference time-domain (FDTD) method for the width, thickness, and period of the metallic nano-hole structures. The thickness of the metal film and the metallic nano-hole is 30 and 20 nm in the 214 nm wide nano-hole size, respectively. The double layered SPR structures are fabricated with monolayer polystyrene beads of 420 nm wide. The sensitivities of the conventional SPR sensor and the double layered SPR sensor are obtained to 42.2 and 52.1 degree/RIU, respectively.

A Study on the Optical Characteristics of Multi-Layer Touch Panel Structure on Sapphire Glass (Sapphire Glass 기반 다층박막 터치패널구조의 광학특성 연구)

  • Kwak, Young Hoon;Moon, Seong Cheol;Lee, Ji Seon;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.168-174
    • /
    • 2016
  • A conductive oxide-based sapphire glass indium tin oxide/metal electrode and the optical coating, through patterning process was studied in excellent optical properties and integrated touch panel has a high strength. Indium tin oxide conductive oxides of the sapphire glass to 0.3 A at DC magnetron sputtering method of 10 min, gas flow Ar 10 Sccm Ar, $O_2$ 1.0 Sccm the formation conditions of the thin film after annealing at $550^{\circ}C$ for 30min was achieved through a 86% transmittance. In addition, the coating 130 nm hollow silica sol-gel was to improve the optical transmittance of the indium tin oxide to 91%. For the measurement by the modeling hollow silica sol by Macleod simulation and calculated the average values of silica part to the presence or absence in analogy to actual. Refractive index value and the actual value of the material on the simulation the transmittance difference is it does not completely match the air region similar to the actual value (transmission) could be confirmed that the measurement is set to a value of between 5 nm and 10 nm.