• Title/Summary/Keyword: Metal die

Search Result 859, Processing Time 0.028 seconds

Die Manufacturing and Repair Using Laser-Aided Direct Metal Manufacturing (레이저 직접금속조형(DMM)기술에 의한 금형제작 및 보수)

  • 지해성;서정훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.104-107
    • /
    • 2002
  • Direct Metal Manufacturing (DMM) is a new additive process that aims to take die making and metalworking in an entirely new direction. It is the blending of five common technologies : lasers, computer-aided design (CAD), computer-aided manufacturing (CAM), sensors and powder metallurgy. The resulting process creates parts by focusing an industrial laser beam onto a tool-steel work piece or platform to create a molten pool of metal. A small stream of powdered tool-steel metal is then injected into the melt pool to increase the size of the molten pool. By moving the laser beam back and forth, under CNC control, and tracing out a pattern determined by a computerized CAD design, the solid metal part is built line-by-line, one layer at a time. DMM produces improved material properties in less time and at a lower cast than is possible with traditional fabrication.

  • PDF

Evaluation of marginal and internal gap of three-unit metal framework according to subtractive manufacturing and additive manufacturing of CAD/CAM systems

  • Kim, Dong-Yeon;Kim, Eo-Bin;Kim, Hae-Young;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.463-469
    • /
    • 2017
  • PURPOSE. To evaluate the fit of a three-unit metal framework of fixed dental prostheses made by subtractive and additive manufacturing. MATERIALS AND METHODS. One master model of metal was fabricated. Twenty silicone impressions were made on the master die, working die of 10 poured with Type 4 stone, and working die of 10 made of scannable stone. Ten three-unit wax frameworks were fabricated by wax-up from Type IV working die. Stereolithography files of 10 three-unit frameworks were obtained using a model scanner and three-dimensional design software on a scannable working die. The three-unit wax framework was fabricated using subtractive manufacturing (SM) by applying the prepared stereolithography file, and the resin framework was fabricated by additive manufacturing (AM); both used metal alloy castings for metal frameworks. Marginal and internal gap were measured using silicone replica technique and digital microscope. Measurement data were analyzed by Kruskal-Wallis H test and Mann-Whitney U-test (${\alpha}=.05$). RESULTS. The lowest and highest gaps between premolar and molar margins were in the SM group and the AM group, respectively. There was a statistically significant difference in the marginal gap among the 3 groups (P<.001). In the marginal area where pontic was present, the largest gap was $149.39{\pm}42.30{\mu}m$ in the AM group, and the lowest gap was $24.40{\pm}11.92{\mu}m$ in the SM group. CONCLUSION. Three-unit metal frameworks made by subtractive manufacturing are clinically applicable. However, additive manufacturing requires more research to be applied clinically.

An automated process planning 8 die design using expert system for blanking or piercing of irregular shaped sheet metal products (불규칙성 박판제품의 프로그래시브 다이설계를 위한 자동화된 CAD시스템)

  • Kim, J. H.;Kim, C.;Choi, J. C.;Kim, B. M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.214-218
    • /
    • 1995
  • Much labor, an exceedingly long lead time, and the skills of experienced engineers are required for press tool design. To reduce such problems, several CAD systems for blanking or piercing have been developed. This paper describes a computer-aided design for blanking or piercing of irregularly shaped sheet metal products. An approach to the system is based on knowledge base rules. The process planning & die design system is designed by considering several factors, such as complexity of blank geometry, punch profile, and availability of press equipment and standard parts. Therefore, after checking a production feasibility for irregular shaped sheet metal products, this system which is implemented strip layout module can carry out a process planning and generate the strip layout in graphic forms. Also this system implemented die layout module can carry out a die design for each process which is obtained form the result of an automated process planning and generate parts and assembly drawing of a die set.

  • PDF

A Study on the Influence of the Integrated Structure and Independent of the Die Pad on the Products thickness in the Drawing Process (드로잉 가공에서 다이패드의 독립형과 일체형 구조가 제품 두께에 미치는 영향에 관한 연구)

  • Lee, Chun-Kyu;Nam, Seung-Done
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.235-240
    • /
    • 2015
  • Using a progressive die of the multi-stage drawing product, It was experiments for the Influence of the Products Roundness on the die pad process Safety die model, obstacle countermeasure research safety die design When the die pad is independent structure, Sidewall thickness of the inside 2stage, 3stage, 4stage of the product is thicker, the thickness of the inside 1stage and the bottom is thinner. it was become unstable beacuse the inside 1stage related to the Products Roundness is thinner. When the die pad is Integrated structure, Sidewall thickness of the inside 1stage, 2stage of the product is thicker, and Sidewall 3stage and 4stage was a thin. it was become unstable beacuse the inside 3stage related to the Products Roundness is thinner. Therefore, The appropriate combination of and integrated independent is required for each process.

High-temperature Semiconductor Bonding using Backside Metallization with Ag/Sn/Ag Sandwich Structure (Ag/Sn/Ag 샌드위치 구조를 갖는 Backside Metallization을 이용한 고온 반도체 접합 기술)

  • Choi, Jinseok;An, Sung Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The backside metallization process is typically used to attach a chip to a lead frame for semiconductor packaging because it has excellent bond-line and good electrical and thermal conduction. In particular, the backside metal with the Ag/Sn/Ag sandwich structure has a low-temperature bonding process and high remelting temperature because the interfacial structure composed of intermetallic compounds with higher melting temperatures than pure metal layers after die attach process. Here, we introduce a die attach process with the Ag/Sn/Ag sandwich structure to apply commercial semiconductor packages. After the die attachment, we investigated the evolution of the interfacial structures and evaluated the shear strength of the Ag/Sn/Ag sandwich structure and compared to those of a commercial backside metal (Au-12Ge).

Conformal Cooling Channel Manufacturing for the Die (Conformal Cooling Channel 의 구조물 제작)

  • Lee C.W.;Suh J.H.;Woo S.S.;Kim D.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1761-1765
    • /
    • 2005
  • The plastic injection molding industry is increasing pressure to reduce the cycle time in order to improve the productivity. The time of a cooling die is a large part of the cycle time. The conformal cooling channels can reduce the cooling time effectively as compared with conventional production die. It is hard to make the die with a conformal cooling channel by the conventional method. This paper introduces the method of a conformal cooling channel manufacturing by the DMT (Direct Metal Tooling) that is a new technology.

  • PDF

A Study on Characteristics of Die Finishing Using Conductive Elastic Tool (도전성 탄성공구를 이용한 금형연마 특성에 관한 연구)

  • 황찬해;임동재;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.96-102
    • /
    • 2000
  • The finishing process for dies and molds is an important process because it has influence on final quality of products. And it is difficult to automatize finishing process so that the process has depended on expert's skill until now. However, recently a study on development of die automatic finishing machine has been progressed, and actually this machine is applied to fabrication of die. But the research about tooling system is not enough and finishing tool must have high machining efficiency and adaptability of curved surface. So, this study investigated the application of conductive elastic tool which is composed of metal-resin bonded pellet and elastic backing material. The metal-resin bonded pellet is used to finish the surface by conventional mechanical grinding or electro-chemial grinding method. And elastic backing material is used to follow the curved surface. So conductive elastic tool has long lifetime, uniform removal rate and adaptability of curved surface.

  • PDF

Optimization Techniques of Die Disign on Hot Extrusion Process of Metal Matrix Composites (금속복합재료의 열간압출에 관한 금형설계의 최적화기법(I))

  • 강충길;김남환;김병민
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.346-356
    • /
    • 1997
  • The fiber orientation distribution and interface bonding in hot extrusion process have an effect on the maechanical properties of metal matrix composites(MMC's). Aluminium alloy matrix composites reinforced with alumina short fibers are fabricated by compocasting method. MMC's billets are extruded at high temperature through conical and curved shaped dies with various extrusion ratios and temperature. This present study was directed to describe the systematic correlation between extrusion die shape and subsequent results such as fiber breakage, fiber orientation and tensile strength to hot extruded MMC's billet. Extrusion load, tensile strength and hardness for variation of extrusion ratios and temperature are investigated to examine mechanical properties of extruded MMC's SEM fractographs of tensile specimens are observed to analyze the fracture mechanism.

  • PDF

A study on shearing die design for window roller housing and die manufacture (창호용 롤러 하우징의 전단금형 설계 및 제작에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.35-39
    • /
    • 2014
  • Window roller housings are durable because high-quality source materials such as stainless steel is used in making them. After a series of precise structure analysis, their design is optimized. They are subject to repetitive driving tests of more 100,000 times, durability tests, impact resistance tests, corrosion tests and others. For a long time, gaps often occur in press molded products owing to serious squareness deformation and flatness deformation of them. Severe burrs in press molded products require frequent grinding, which leads to short life cycle and rough or unreliable movement of assembled roller housing, which, in turn, causes product defects. This study focuses on developing measures to resolve existing defects and to improve lifespan of dies by designing and making a window roller shearing die.

  • PDF

A study on pencil-core dies and die manufacture (펜슬코어 금형의 설계 및 제작에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.7-10
    • /
    • 2013
  • Pencil-core dies are relatively new technology in Korea. It is not that no one had tried to make them but had failed due to lack of technologies. However, Posco TMC Co., Ltd, one of the leading die makers in the world, is capable of sophisticated dies including pencil-core dies. Spark plugs made by pencil-core dies have energy efficiency close to 100 percent, which compares to 46 percent of conventional spark plugs. Even though they are now mostly installed in LPG automobiles, more and more diesel and gasoline vehicles are adopting them. This study focuses on how to improve core shape precision using controling design and parts machining methods for pencil-core dies and productivity.

  • PDF