• 제목/요약/키워드: Metal ceramic

검색결과 1,483건 처리시간 0.025초

A computational shear displacement model for vibrational analysis of functionally graded beams with porosities

  • Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.369-384
    • /
    • 2015
  • This work presents a free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a simple displacement field based on higher order shear deformation theory is implemented. The proposed theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. In addition, it has strong similarities with Euler-Bernoulli beam theory in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. By employing the Hamilton's principle, governing equations of motion for coupled axial-shear-flexural response are determined. The validity of the present theory is investigated by comparing some of the present results with those of the first-order and the other higher-order theories reported in the literature. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

낙상에 의해 상악 전치부에 외상을 입은 노인 환자에서 수술을 배제하고 고정성 보철물을 이용하여 수복한 증례 (Prosthetic reconstruction of maxillary defect resulting from a traumatic fall in an elderly patient: A case report)

  • 배윤주;최순영
    • 대한치과보철학회지
    • /
    • 제57권1호
    • /
    • pp.75-80
    • /
    • 2019
  • 낙상에 의해 치아 및 주변 조직이 손상되어 구강 내 경조직 및 연조직의 상실이 발생한 경우 이를 재건하기 위한 방법으로 외과적 접근법과 보철적 접근법이 제시될 수 있다. 치은부가 포함된 보철물을 이용하는 보철적 접근법은 외과적 수술을 생략함으로써 치료 과정을 단순화 하고 치료 시간과 비용을 줄일 수 있다는 장점이 있다. 특히, 상악 전치부 치아 및 치조골의 상실을 보철적으로 재건하는 경우 치은부가 포함된 보철물에 의해 확실한 안면부 지지를 제공하게 되어 안모의 심미적 결손을 보상할 수 있고 상 하악의 관계를 개선시킬 수 있다. 본 증례는 낙상으로 인해 상악 전치부에 광범위한 손상을 입은 노인 환자에서 수술을 배제하고, 치은 색상의 도재가 포함된 고정성 보철물을 이용하여 수복함으로써 예지성 있는 심미적 결과를 얻었기에 이를 보고하고자 한다.

Comparative clinical study of the marginal discrepancy of fixed dental prosthesis fabricated by the milling-sintering method using a presintered alloy

  • Kim, Mijoo;Kim, Jaewon;Mai, Hang-Nga;Kwon, Tae-Yub;Choi, Yong-Do;Lee, Cheong-Hee;Lee, Du-Hyeong
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권5호
    • /
    • pp.280-285
    • /
    • 2019
  • PURPOSE. The present study was designed to examine the clinical fit of fixed dental prosthesis fabricated by the milling-sintering method using a presintered cobalt-chromium alloy. MATERIALS AND METHODS. Two single metal-ceramic crowns were fabricated via milling-sintering method and casting method in each of the twelve consecutive patients who required an implant-supported fixed prosthesis. In the milling-sintering method, the prosthetic coping was designed in computer software, and the design was converted to a non-precious alloy coping using milling and post-sintering process. In the casting method, the conventional manual fabrication process was applied. The absolute marginal discrepancy of the prostheses was evaluated intraorally using the triple-scan technique. Statistical analysis was conducted using Mann-Whitney U test (${\alpha}=.05$). RESULTS. Eight patients (66.7%) showed a lower marginal discrepancy of the prostheses made using the milling-sintering method than that of the prosthesis made by the casting method. Statistically, the misfit of the prosthesis fabricated using the milling-sintering method was not significantly different from that fabricated using the casting method (P=.782). There was no tendency between the amount of marginal discrepancy and the measurement point. CONCLUSION. The overall marginal fit of prosthesis fabricated by milling-sintering using a presintered alloy was comparable to that of the prosthesis fabricated by the conventional casting method in clinical use.

SBT 강유전체 충전층 저온 플라즈마 반응기의 전기적 특성, 오존생성 및 휘발성유기화합물의 분해 (Characteristics of Electrical Properties, Ozone Generation and Decomposition of Volatile Organic Compounds by Nonthermal Plasma Reactor Packed with SBT Ferroelectric)

  • 어준;김일원;박진도;이주영;이학성
    • 공업화학
    • /
    • 제22권3호
    • /
    • pp.249-254
    • /
    • 2011
  • Ferroelectric의 강유전체 소구들을 충전한 원통형의 비열 방전 플라즈마 반응기를 설계 제작하였으며, 강유전체 층방전 구조를 구성하는 평판(20 mm 간격) 금속망 전극 사이에 직경 2.0 mm인 $SrBiTaO_9$ (SBT) 소구들을 위치시키고 고압의 교류 전원을 인가하였다. SBT 소구는 상온($25^{\circ}C$)에서 150, 큐리온도($335^{\circ}C$)에서 500의 유전상수를 가졌다. 플라즈마 반응기에서 오존 생성속도는 거의 인가전압의 증가에 비례하였으며, SBT 소구들이 충전된 경우, 20 kV 이상의 인가전압에서 오존 생성속도는 급격하게 증가하였다. 부코로나 방전에서 오존 생성속도가 정코로나 방전에서의 경우보다 높았다. 그러나 톨루엔 및 메틸렌클로라이드의 분해율은 생성된 오존 농도에 비례하여 증가하지 않았다.

Variation in adhesion of Streptococcus mutans and Porphyromonas gingivalis in saliva-derived biofilms on raw materials of orthodontic brackets

  • Park, So-Hyun;Kim, Kyungsun;Cho, Soha;Chung, Dong-Hwa;Ahn, Sug-Joon
    • 대한치과교정학회지
    • /
    • 제52권4호
    • /
    • pp.278-286
    • /
    • 2022
  • Objective: To evaluate differences in the adhesion levels of the most common oral pathogens, Streptococcus mutans and Porphyromonas gingivalis, in human saliva-derived microcosm biofilms with respect to time and raw materials of orthodontic brackets. Methods: The samples were classified into three groups of bracket materials: 1) monocrystalline alumina ceramic (CR), 2) stainless steel metal (SS), and 3) polycarbonate plastic (PL), and a hydroxyapatite (HA) group was used to mimic the enamel surface. Saliva was collected from a healthy donor, and saliva-derived biofilms were grown on each sample. A real-time polymerase chain reaction was performed to quantitatively evaluate differences in the attachment levels of total bacteria, S. mutans and P. gingivalis at days 1 and 4. Results: Adhesion of S. mutans and P. gingivalis to CR and HA was higher than the other bracket materials (SS = PL < CR = HA). Total bacteria demonstrated higher adhesion to HA than to bracket materials, but no significant differences in adhesion were observed among the bracket materials (CR = SS = PL < HA). From days 1 to 4, the adhesion of P. gingivalis decreased, while that of S. mutans and total bacteria increased, regardless of material type. Conclusions: The higher adhesion of oral pathogens, such as S. mutans and P. gingivalis to CR suggests that the use of CR brackets possibly facilitates gingival inflammation and enamel decalcification during orthodontic treatment.

Free vibration analysis of FG plates under thermal environment via a simple 4-unknown HSDT

  • Attia, Amina;Berrabah, Amina Tahar;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.899-910
    • /
    • 2021
  • A 4-unknown shear deformation theory is applied to investigate the vibration of functionally graded plates under thermal environment. The plate is fabricated from a functionally graded material mixed of ceramic and metal with continuously varying material properties through the plate thickness. Three types of thermal loadings, uniform, linear and nonlinear temperature rises along the plate thickness are taken into account. The present theory contains four unknown functions as against five or more in other higher order shear deformation theories. The through-the-thickness distributions of transverse shear stresses of the plate are considered to vary parabolically and vanish at upper and lower surfaces. The present model does not require any problem dependent shear correction factor. Analytical solutions for the free vibration analysis are derived based on Fourier series that satisfy the boundary conditions (Navier's method). Benchmark solutions are firstly considered to evaluate the accuracy of the proposed model. Comparisons with the solutions available in literature revealed the good capabilities of the present model for the simulations of vibration responses of FG plates. Some parametric studies are carried out for the frequency analysis by varying the volume fraction profile and the temperature distribution across the plate thickness.

Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment

  • Bot, Ikram Kheira;Bousahla, Abdelmoumen Anis;Zemri, Amine;Sekkal, Mohamed;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, M.H.;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.821-837
    • /
    • 2022
  • This research is devoted to study the effects of humidity and temperature on the bending behavior of functionally graded (FG) ceramic-metal porous plates resting on Pasternak elastic foundation using a quasi-3D hyperbolic shear deformation theory developed recently. The present plate theory with only four unknowns, takes into account both transverse shear and normal deformations and satisfies the zero traction boundary conditions on the surfaces of the functionally graded plate without using shear correction factors. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. The governing differential equations are obtained using the "principle of virtual work". Analytically, the Navier method is used to solve the equations that govern a simply supported FG porous plate. The obtained results are checked by comparing the results determined for the perfect and imperfect FG plates with those available in the scientific literature. Effects due to material index, porosity factors, moisture and thermal loads, foundation rigidities, geometric ratios on the FG porous plate are all examined. Finally, this research will help us to design advanced functionally graded materials to ensure better durability and efficiency for hygro-thermal environments.

Buckling of 2D FG Porous unified shear plates resting on elastic foundation based on neutral axis

  • Rabab, Shanab;Salwa, Mohamed;Mohammed Y., Tharwan;Amr E., Assie;Mohamed A., Eltaher
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.729-747
    • /
    • 2022
  • The critical buckling loads and buckling modes of bi-directional functionally graded porous unified higher order shear plate with elastic foundation are investigated. A mathematical model based on neutral axis rather than midplane is developed in comprehensive way for the first time in this article. The material constituents form ceramic and metal are graded through thickness and axial direction by the power function distribution. The voids and cavities inside the material are proposed by three different porosity models through the thickness of plate. The constitutive parameters and force resultants are evaluated relative to the neutral axis. Unified higher order shear plate theories are used to satisfy the zero-shear strain/stress at the top and bottom surfaces. The governing equilibrium equations of bi-directional functionally graded porous unified plate (BDFGPUP) are derived by Hamilton's principle. The equilibrium equations in the form of coupled variable coefficients partial differential equations is solved by using numerical differential integral quadrature method (DIQM). The validation of the present model is presented and compared with previous works for bucking. Deviation in buckling loads for both mid-plane and neutral plane are developed and discussed. The numerical results prove that the shear functions, distribution indices, boundary conditions, elastic foundation and porosity type have significant influence on buckling stability of BDFGPUP. The current mathematical model may be used in design and analysis of BDFGPU used in nuclear, mechanical, aerospace, and naval application.

Assessment of Voigt and LRVE models for thermal shock analysis of thin FGM blade: A neutral surface approach

  • Ankit Kumar;Shashank Pandey
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.105-118
    • /
    • 2023
  • The present work is an attempt to develop a simple and accurate finite element formulation for the assessment of thermal shock/thermally induced vibrations in pretwisted and tapered functionally graded material thin (FGM) blades obtained from Voigt and local representative volume elements (LRVE) homogenization models, based on neutral surface approach. The neutral surface of the FGM blade does not coincide with its mid-surface. A finite element model (FEM) is developed using first-order shear deformation theory (FSDT) and the FGM turbine blade is modelled according to the shallow shell theory. The top and the bottom layers of the FGM blade are made of pure ceramic and pure metal, respectively and temperature-dependent material properties are functionally graded in the thickness direction, the position of the neutral surface also depends on the temperature. The material properties are estimated according to two different homogenization models viz., Voigt or LRVE. The top layer of the FGM blade is subjected to high temperature and the bottom surface is either thermally insulated or kept at room temperature. The solution of the nonlinear profile of the temperature in the thickness direction is obtained from the Fourier law of heat conduction in the unsteady state. The results obtained from the present FEM are compared with the benchmark examples. Next, the effect of angle of twist, intensity of thermal shock, variable chord and span and volume fraction index on the transient response due to thermal shock obtained from the two homogenization models viz., Voigt and LRVE scheme is investigated. It is shown that there can be a significant difference in the transient response calculated by the two homogenization models for a particular set of material and geometric parameters.

상악 전치부 단일치 상실 환자에서 지르코니아 레진접착성 고정성 국소의치를 이용한 수복 증례 (Zirconia resin-bonded fixed partial denture in maxillary single-tooth edentulous area: A case report)

  • 오로지;장희원;김나홍;방주혁;이근우;이용상
    • 대한치과보철학회지
    • /
    • 제61권2호
    • /
    • pp.135-142
    • /
    • 2023
  • 일명 '메릴랜드 브릿지'로 불리는 Resin-bonded fixed partial denture (RBFPD)는 전치부 결손부위를 수복하는데 있어 침습범위를 최소화하는 보존적 보철치료로 잘 정립되어 있다. 하지만 RBFPD의 여러 이점에도 불구하고 높은 탈락률, 비심미성, 지지체 파절 등으로 인해 보편적인 치료방법으로 선택되지는 못하였다. 최근 치과 재료의 발달과 함께 지르코니아가 RBFPD의 새로운 재료로 도입되면서 강도와 심미성이 개선된 전치부 RBFPD의 적용에 적합한 재료로 평가받고 있다. 본 증례는 상악 좌측 측절치를 상실한 환자에서 지르코니아 RBFPD를 수복한 증례로, 전치부에서 비침습적이며 심미적인 보철물을 이용하여 치아상실부위를 수복하였고, 환자와 술자 모두 만족하는 결과를 얻었기에 본 증례를 보고하는 바이다.