Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.3.249

Characteristics of Electrical Properties, Ozone Generation and Decomposition of Volatile Organic Compounds by Nonthermal Plasma Reactor Packed with SBT Ferroelectric  

Eo, Joon (School of Chemical Engineering & BioEngineering, University of Ulsan)
Kim, Il Won (Department of Physics, University of Ulsan)
Park, Jin Do (Department of Environmental & life Chemistry, Ulsan College)
Lee, Joo Young (Department of Environmental & life Chemistry, Ulsan College)
Lee, Hak Sung (School of Chemical Engineering & BioEngineering, University of Ulsan)
Publication Information
Applied Chemistry for Engineering / v.22, no.3, 2011 , pp. 249-254 More about this Journal
Abstract
A nonthermal plasma reactor in conjunction with a tubular type with a ferroelectric (high-dielectric ceramic) pellet layer was designed and constructed. $SrBiTaO_9$ (SBT) pellets with 2.0 mm in diameter were held within the tube arrangement by two metal mesh electrodes (20 mm separation) connected to a high-voltage AC power supply. The dielectric constant of SBT pellets was 150 at room temperature and 500 at curie temperature ($335^{\circ}C$). The generation rate of ozone in the plasma reactor almost linearly increased with increasing applied voltage. In the case of the plasma reactor packed with SBT pellets the generation rate of ozone sharply increased at the applied voltage more than 20 kV. The ozone generation rate at the negative corona discharge was higher than that of the positive corona discharge. However, the destruction efficiency of toluene and methylene chloride was not increased in proportion to ozone concentration.
Keywords
ferroelectric pellet; $SrBiTaO_9$ (SBT); ozone; nonthermal plasma; VOCs;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 I. W. Kim, Plasma technology for the romoval of VOCs of Ulsan petrochemical complex, URETDC (2000).
2 J. F. Scott, Ferroelectric Memories, Springer, Berlin (2000).
3 C. M. Nunez, G. H. Ramsey, W. H. Ponder, J. H. Abbott, L. E. Hamel, and P. H. Kariher, J. Air & Waste Manag. Assoc., 43, 242 (1993).
4 A. Ogata, D. Ito, K. Mizuno, S. Kushiyama, A. Gal, and T. Yamamoto, Appl. Catal. A, 236, 9 (2002).   DOI   ScienceOn
5 A. Koutsospyros, S. M. Yin, C. Christodoulatos, and K. Becker, Int. J. Mass Spectrom., 233, 305 (2004).   DOI   ScienceOn
6 H. H. Kim, S. M. Oh, A. Ogata, and S. Futamura, Appl. Catal. B, 56, 213 (2005).   DOI   ScienceOn
7 Y. H. Song, J. Korean Ind. Eng. Chem., 17, 1 (2006).
8 H. H. Kim, A. Ogata, and S. Futamura, J. Phys. D: Appl. Phys., 38, 1292 (2005).   DOI   ScienceOn
9 T. Hammer and S. Broer, Plasma enhanced selective catalytic reduction of NOx for diesel cars, SAE 982,428 (1998).
10 J. D. Moon and S. T. Geum, IEEE Trans. on Ind. Appl., 34, 1206 (1998).   DOI   ScienceOn
11 D. Evans, J. J. Coogan, G. K. Anderson, L. A. Rosocha, and M. J. Kushner, J. Appl. Phys., 74, 5378 (1993).   DOI   ScienceOn
12 P. M. Castle, I. E. Kanter, P. K. Lee, and L. E. Kline, Westinghouse Corp. Final Report, Contract DAAA 09-82-C-5396 (1984).
13 T. Yamamoto, P. A. Lawless, and L. E. Sparks, IEEE Trans. on Ind. Appl., 24, 934 (1988).   DOI   ScienceOn
14 T. Yamamoto, P. A. Lawless, and L. E. Sparks, IEEE Trans. on Ind. Appl., 25, 743 (1989).   DOI   ScienceOn