• 제목/요약/키워드: Metal carbide

검색결과 266건 처리시간 0.03초

The Influence of a Second Metal on the Ni/SiC Catalyst for the Methanation of Syngas

  • Song, Lanlan;Yu, Yue;Wang, Xiaoxiao;Jin, Guoqiang;Wang, Yingyong;Guo, XiangYun
    • Korean Chemical Engineering Research
    • /
    • 제52권5호
    • /
    • pp.678-687
    • /
    • 2014
  • The catalytic performance of silicon carbide supported nickel catalysts modified with or without second metal (Co, Cu and Zn) for the methanation of CO has been investigated in a fixed-bed reactor using a feed consisting of 25% CO and 75% $H_2$ without any diluent gas. It has been found that the introduction of Co species can clearly improve the catalytic activity of Ni/SiC catalyst, whereas the addition of Cu or Zn can result in a significant decrease in the catalytic activity. The characterizations by means of XRD, TEM, XPS, CO-TPD and $H_2$-TPR indicate that the addition of Co could decrease the particle size of active metal, increase active sites on the surface of methanation catalyst, improve the chemisorption of CO and enhance the reducibility of methanation catalysts. Additionally, the special interaction between Co species and Ni species is likely favorable for the dissociation of adsorbed CO on the surface of catalyst, and this may also contribute to the high activity of 5Co-Ni/SiC catalyst for CO methanation reaction. For 5Cu-Ni/SiC catalyst and 5Zn-Ni/SiC catalyst, Cu and Zn species could cover partial nickel particles and decrease the chemisorption amount of CO. These could be responsible for the low methanation activity. In addition, a 150h stability test under 2 MPa and $300^{\circ}C$ showed that 5Co-Ni/SiC catalyst was very stable for CO methanation reaction.

GTAW에 의한 스테인리스강 용접부위의 부식특성에 관한 전기화학적 평가 (An Electrochemical Evaluation on Corrosion Properties of Welding Zone of Stainless Steel by GTAW)

  • 문경만;이규환;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.678-685
    • /
    • 2010
  • STS304와 22APU 스테인리스강에 가스 텅스텐 아크용접을 하였다. 이 경우 두 강의 용접부의 부식특성을 전기화학적 방법으로 검토하였다. STS304 용접금속의 경도(Hv-250)는 22APU 강(Hv-217) 보다 상대적으로 높은 값을 보였다. 22APU의 용접금속과 STS 304의 열영향부의 부식전류 밀도는 다른 용접부위와 비교하여 각각 높은 값이 관찰 되었으며, 이것은 예민화 온도 영역에 있는 STS 304의 열영향부와 22APU의 용접금속에 형성된 크롬탄화물로 크롬결핍이 더욱 활성태의 양극으로 쉽게 부식된 것에 기인하는 것으로 사료된다. 그리고 이들 두 강의 용접금속과 열영향부는 크롬결핍상태에 있는 입자 사이 경계의 선택부식으로 입계부식을 나타내었다. 결과적으로 다른 용접방법의 적용이나 적절한 용접봉 사용은 두 강의 용접부에 대한 내식성을 개선하기 위해서 필요한 것으로 사료된다.

Study on Co- and Ni-base $Si_2$ for SiC ohmic contact

  • 김창교;양성준;노일호;장석원;조남인;정경화
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.167-171
    • /
    • 2003
  • We report the material and electrical properties of $CoSi_2$ and $NiSi_2$contacts to n-type 4H-SiC depending on the post-annealing and the metal covering conditions. The Ni and Co silicides are deposited by RF sputtering with Ni/Si/Ni and Co/Si/Co films separately deposited on 4H-SiC substrates. The deposited films are annealed at $800\;^{\circ}C$ in $Ar:H_2$ (9:1) gas ambient. Results of the specific surface resistivity measurements show that the resistivity of the Co-based metal contact was the one order lower than that of the Ni-based contact. The specific contact resistance was measured by a transmission line technique, and the specific contact resistivity of $1.5{\times}10^{-6}\;{\Omega}\;cm^2$ is obtained for Co/Si/Co metal structures after a two-step annealing; at $550\;^{\circ}C$ for 10 min and $800\;^{\circ}C$ for 3min. The physical properties of the contacts were examined by using XRD and AES, and the results indicate that the Co-based metal contacts have better structural stability of silicide phases formed after the high temperature annealing.

  • PDF

Vibration and damping behaviors of symmetric layered functional graded sandwich beams

  • Demir, Ersin
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.771-780
    • /
    • 2017
  • In this study, free vibration and damping behaviors of multilayered symmetric sandwich beams and single layered beams made of Functionally Graded Materials were investigated, experimentally and numerically. The beams were composed of Aluminum and Silicon Carbide powders and they were produced by powder metallurgy. Three beam models were used in the experiments. The first model was isotropic, homogeneous beams produced by using different mixing ratios. In the second model, the pure metal layers were taken in the middle of the beam and the weight fraction of the ceramic powder of each layer was increased towards to the surfaces of the beam in the thickness direction. In the third model, the pure metal layers were taken in the surfaces of the beam and the weight fraction of the ceramic powder of each layer was increased towards to middle of the beam. Then the vibration tests were performed. Consequently, the effects of stacking sequence and mixing ratio on the natural frequencies and damping responses of functionally graded beams were discussed from the results obtained. Furthermore, the results obtained from the tests were supported with a finite-element-based commercial program, and it was found to be in harmony.

소실모형 주조법에서 도형제가 오스테나이트 스테인레스강 주물의 표면층조직에 미치는 영향 (Effect of Coating Materials on Surface Layer Structures of Austenitic Stainless Steel Castings in Evaporative Pattern Process)

  • 김지윤;조남돈
    • 한국주조공학회지
    • /
    • 제15권6호
    • /
    • pp.604-615
    • /
    • 1995
  • Austenitic stainless steel castings using expandable polystylene(referred to hereafter as EPS) patterns are often affected by distinctive defects associated with incomplete decomposition of the EPS as the molds are filled with metal. The quality of the castings, with particular reference to carbon pick-up in austenitic stainless steel is further influenced to a significant extent by such factors as reduced pressure, the additive by adding $Na_2CO_3$ in coating. The steel composition and microstructure were examined at the surface layer of castings, at depths of 1mm, by taking successive layers of swarf and analysis. In experiments, the carburizing atmosphere was neutralized, showing that the coating performed efficiently by decomposing almost instantly on heating and liberating $CO_2$. The upper parts of castings obtained using EPS patterns were slightly higher in carbon pick-up than other parts. Comparing the 316L and 304 stainless steel castings, qualitative and quantative differences could be found between the carbon pick-up behaviours as influence of the carbon content and alloying elements. Carbide former such as Cr makes carbon more soluble in the steel. This must make carbon pick-up in the surface layer but at the same time richer in carbon especially in the 304 stainless steel castings.

  • PDF

Vertically Standing Graphene on Glass Substrate by PECVD

  • Ma, Yifei;Hwang, Wontae;Jang, Haegyu;Chae, Heeyeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.232.2-232.2
    • /
    • 2014
  • Since its discovery in 2004, graphene, a sp2-hybridized 2-Dimension carbon material, has drawn enormous attention. A variety of approaches have been attempted, such as epitaxial growth from silicon carbide, chemical reduction of graphene oxide and CVD. Among these approaches, the CVD process takes great attention due to its guarantee of high quality and large scale with high yield on various transition metals. After synthesis of graphene on metal substrate, the subsequent transfer process is needed to transfer graphene onto various target substrates, such as bubbling transfer, renewable epoxy transfer and wet etching transfer. However, those transfer processes are hard to control and inevitably induce defects to graphene film. Especially for wet etching transfer, the metal substrate is totally etched away, which is horrendous resources wasting, time consuming, and unsuitable for industry production. Thus, our group develops one-step process to directly grow graphene on glass substrate in plasma enhanced chemical vapor deposition (PECVD). Copper foil is used as catalyst to enhance the growth of graphene, as well as a temperature shield to provide relatively low temperature to glass substrate. The effect of growth time is reported that longer growth time will provide lower sheet resistance and higher VSG flakes. The VSG with conductivity of $800{\Omega}/sq$ and thickness of 270 nm grown on glass substrate can be obtained under 12 min growing time. The morphology is clearly showed by SEM image and Raman spectra that VSG film is composed of base layer of amorphous carbon and vertically arranged graphene flakes.

  • PDF

코팅공구의 제조에서 공정인자가 증착특성에 미치는 영향 (Effect of Process Parameters on Deposition Characteristics in Fabrication of Coated Tools)

  • 김종희
    • 한국표면공학회지
    • /
    • 제28권6호
    • /
    • pp.368-375
    • /
    • 1995
  • Thermal CVD method is in general used for the fabrication of TiC/$Al_2O_3$-coated carbide tools. The growth of TiC layer and the coating morphology depended on the chemical composition of the hard metal substrate on which the tool properties were strongly influenced. TiC-coated layer was grown by the diffusion of carbon from the substrate, whereas the growth of $Al_2O_3$ layer was unrelated to the composition of substrate. In the nitride hard coatings of Zr, Nb and Mo metals deposited on high speed steel substrate by magnetron sputtering, the reactivity of the metal elements was decreased with increasing group number in one period of the periodic system. The hard material films exhibited the highest adhesion with the chemical composition of stoichiometry or substoichiometry. The critical load as a measure of adhesion was evaluated using scratch tester. The CVD tools indicated the values of 80 and 40N in the coated layers with proper bonding to the substrate and with $\eta$ phase of 1$\mu\textrm{m}$ in the interface respectively, but the nitride films prepared by sputtering of PVD showed only the values between 10 and 20N.

  • PDF

비구면 유리렌즈 성형용 SiC 코어의 DLC 코팅에 관한 연구 (A Research on DLC Thin Film Coating of a SiC Core for Aspheric Glass Lens Molding)

  • 박순섭;원종호
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.28-32
    • /
    • 2010
  • Technical demands for aspheric glass lens formed in market increases its application from simple camera lens module to fiber optics connection module in optical engineering. WC is often used as a metal core of the aspheric glass lens, but the long life time is issued because it fabricated in high temperature and high pressure environment. High hard thin film coating of lens core increases the core life time critically. Diamond Like Carbon(DLC) thin film coating shows very high hardness and low surface roughness, i.e. low friction between a glass lens and a metal core, and thus draw interests from an optical manufacturing industry. In addition, DLC thin film coating can removed by etching process and deposit the film again, which makes the core renewable. In this study, DLC films were deposited on the SiC ceramic core. The process variable in FVA(Filtered Vacuum Arc) method was the substrate bias-voltage. Deposited thin film was evaluated by raman spectroscopy, AFM and nano indenter and measured its crystal structure, surface roughness, and hardness. After applying optimum thin film condition, the life time and crystal structure transition of DLC thin film was monitored.

보일러용 고강도 T23강의 용접부 손상 원인 분석 (Diagnosis of cracking in T23 welds for power plant application)

  • 박기덕;안종석;신동혁;이창희
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.61-61
    • /
    • 2009
  • This paper has been performed in order to figure out the reason of failure in T23 weldments used for boiler tube at 550 $^{\circ}C$. Defects such as cracks and cavities occurred in CGHAZ (coarse grain heat-affected-zone) and multi pass of weld metal, and these crack propagated along grain boundary. Microstructure evolution such as grain growth and carbide precipitation was investigated by optical microscope (OM), transmission electron microscope(TEM). Moreover, Auger electron spectroscope (AES) was employed in order to examine segregation along the grain boundaries. There is significant difference in grain size and precipitation distribution in the region where cracking took place. In addition, sulfur segregation was observed. Based on the results of this investigation, it has been possible to establish that this type of cracks were consistent with reheat cracking and creep damage. Selection of optimal filler metal, heat input, and PWHT temperature is required for prevention in order to avoid this type of cracking.

  • PDF

IV 천이금속 탄화물과 bcc Fe간 계면 에너지의 제일원리 연구 (An ab Initio Study of Interfacial Energies between Group IV Transition Metal Carbides and bcc Iron)

  • 정순효;정우상;변지영
    • 한국재료학회지
    • /
    • 제15권9호
    • /
    • pp.566-576
    • /
    • 2005
  • This paper describes an ab Initio study on interface energies, misfit strain energies, and electron structures at coherent interfaces Fe(bcc structure)/MCs(NaCl structure M=Ti, Zr, Hf). The interface energies at relaxed interfaces Fe/TiC, Fe/ZrC and Fe/HfC were 0.263, 0.153 and $0.271 J/m^2$, respectively. It was understood that the dependence of interface energy on the type of carbide was closely related to changes of the binding energies between Fe, M and C atoms before and after formation of the interfaces Fe/MCs with the help of the DLP/NNBB (Discrete Lattice Plane/ Nearest Neighbour Broken Bond) model and data of the electron structures. The misfit strain energies in Fe/TiC, Fe/ZrC and Fe/HfC systems were 0.390, 1.692 and 1.408 eV per 16 atoms(Fe: 8 atoms and MC; 8 atoms). More misfit energy was generated as difference of lattice parameters between the bulk Fe and the bulk MCs increased.