• Title/Summary/Keyword: Metal bond

Search Result 582, Processing Time 0.034 seconds

THE EFFECT OF TEMPORARY CEMENT AND DESENSITIZER ON THE BOND STRENGTH OF LUTING CEMENTS (접착용 시멘트의 결합강도에 임시 접착제와 탈감작제가 미치는 영향)

  • Sun Se-Na;Yang Hong-So;Park Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.4
    • /
    • pp.335-343
    • /
    • 2002
  • This study investigated the effect of temporary cement and desensitizer on the bond strength of luting cements. Total 96 dentin specimens were divided into two groups with and without temporary cementation. For temporary cement-tread group, specimens were cemented with $Temp-bond^{(R)}$ and all specimens were stored in distilled water at $37^{\circ}C$ for 7 days. Each cup was further divided into 3 subgroups with $Gluma^{(R)},\;One-step^{(R)}$ application and without desensitizer After desensitizer application, Ni-Cr specimens were luted to dentin surface with $Panavia-F^{(R)}$ and $Vitremer^{(R)}$ Specimens were placed in distilled water at $37^{\circ}C$ for 24 hours and shear bond strength between metal and dentin was measured by a universal testing machine. The results were as follows : 1. In $Panavia-F^{(R)}$ cemented groups, the combination of $One-step^{(R)}$ without temporary cement showed the greatest strength. Among the desensitizer types, $One-step^{(R)}$ showed the highest bond strength, followed by No-desensitizer, $Gluma^{(R)}$. 2. In $Vitremer^{(R)}$ cemented groups, the combination of no temporary cement and without desensitizer showed the greatest bond strength. Among the desensitizer types, No-desensitizer group showed the highest bond strength. 3. The use of $Gluma^{(R)}$ significantly reduced the shear bond strength in $Panavia-F^{(R)}$ and $Vitremer^{(R)}$ groups. 4. All temporary cement-treated groups showed a significant lower shear bond strength than without temporary cement groups. 5. Desensitizer application significantly influenced the bond strength of the resin cement and resin modified glass ionomer cement.

The Effect of Dentin Desensitization Treatment on the Shear Bond Strength of Luting Cements (상아질 지각과민 완화법이 접착용 시멘트의 전단결합강도에 미치는 영향)

  • Park, In-Ho;Lee, Joon-Soek;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.3
    • /
    • pp.231-242
    • /
    • 2006
  • Statement of problem: The sealing of the opened dentinal tubules that follows the tooth preparation for the prosthodontic restoration is considered as clinical process to reduce postoperative sensitivity. Purpose: This study investigated the effect of desensitization treatment on shear bond strength of luting cements. Materials and Method: Total 80 dentin specimens were divided into two groups according to the kinds of luting cements. Each groups was further divided into 4 subgroups with AQ $bond^{(R)}$, $Saforide^{(R)}$, Diode laser $MDL-10^{(R)}$ application and without desensitization treatment. After desensitization treatment application, Ni-Cr specimens were luted to dentin surface with Fuji $CEM^{(R)}$ and $Panavia-F^{(R)}$. Specimens were placed in distilled water at $37^{\circ}C$ for 24 hours and shear bond strength between metal and dentin was measured by a universal testing machine. Results: 1. In Fuji $CEM^{(R)}$ cemented groups, the combination of AQ $bond^{(R)}$ showed the greatest strength, followed by diode laser, no desensitizer treatment, and $Saforide^{(R)}$. Both AQ $bond^{(R)}$ and Diode laser groups had a significant difference than no desensitization treatment group and $Saforide^{(R)}$ group(p<0.05). 2. In $Panavia-F^{(R)}$ cemented groups, the combination of Diode laser showed the greatest strength, followed by AQ $bond^{(R)}$, $Saforide^{(R)}$, and No desensitization treatment. All desensitization treatment groups had a significant difference than no desensitization treatment group(p<0.05). 3. All $Panavia-F^{(R)}$ groups showed a significant higher shear bond strength than all Fuji $CEM^{(R)}$ groups(p<0.05). Conclusion: The results of this study showed possibility of bond strength increase after desensitization treatment. The application of desensitization treatments like AQ $bond^{(R)}$, $Saforide^{(R)}$, and Diode laser $MDL-10^{(R)}$ have advantages in exposed dentin surface after tooth prep.

An Experimental Study on Evaluation of Bond Strength of Arc Thermal Metal Spaying According to Treatment Method of Water Facilities Concrete Surface (수처리 시설물 콘크리트 표면처리 방법에 따른 금속용사 피막의 부착성능 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Lee, Han-Seung;Shin, Jun-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2016
  • In this study, the bond strength of metal spraying system by surface treatment of concrete (waterproof/corrosion method) in water treatment facilities was evaluated. The results showed that the system with Sa-P-R-(S) (sanding-perviousness surface hardener-surface roughness agent-metal spraying-sealing) led to the desirable performance. The bond strength, the coefficient of water permeability and air permeability were 3.7MPa, $0.68{\ast}10^{-8}cm/sec$, and $0.45{\ast}10^{-16}m^2$, respectively. In scanning electron microscope analysis, the microstructure of specimen coated with perviousness surface hardener was much denser than that without it. Therefore, the specimen coated with sanding-perviousness surface hardener-surface roughness agent-metal spraying-sealing had the best bond performance and was the most suitable system to concrete surface in water treatment facilities.

TENSILE BOND STRENGTH BETWEEN NON-PRECIOUS DENTAL ALLOY AND VENEERING REINFORCED COMPOSITE RESINS (치과용 비귀금속 합금과 전장용 강화형 복합레진의 인장결합강도)

  • Yang, Byung-Duk;Park, Ju-Mi;Ko, Sok-Min;Kang, Geon-Gu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.427-437
    • /
    • 2000
  • Recently the 2nd generation laboratory composite resins were introduced. Although the mechanical properties of these composite resins have been improved, there were some disadvantages such as discoloration, low abrasion resistance and debonding between metal and resin. The purpose of this study was to evaluate the tensile bond strength between non-pecious dental alloy(verabond) and four veneering reinforced composite resins ; Targis(Ivoclar Co., U.S.A.), Artglass(Kulzer CO., Germany), Sculpture(Jeneric Pentron Co., U.S.A.), and Estonia(Kurary Co., Japan). All test metal specimens were polished with #1,000 SiC paper, and sandblasted with $250{\mu}m$ aluminum oxide. After then. according to manufacturer's instructions metal adhesive primer and veneering resins were applied. All test specimens were divided into two groups. One group was dried in a desiccator at $25^{\circ}C$ for 3 days, the other group was subjected to thermal cycling($2,000{\times}$) in water($5/55^{\circ}C$). Tensile bond strength was measured using Instron Universal Testing machine and the fractured surface was examined under the naked eyes and scanning electron microscope. Within the limitations imposed in this study, the following conclusions can be drawn: 1. In no-thermal cycling groups, there were no significant differences between Estenia and VMK68 but there were significant differences between Targis, Artglass, Sculpture and VMK68(p<0.05). 2. In no-thermal cycling resin groups, the highest tensile bond strength was observed in Estenia and there were significant differences between Estenia and the other resins(p<0.05). 3. Before and after thermal cycling, there were significant differences in tensile bond strength of Targis and Artglass(p<0.05). The tensile bond strength of Artglass was decreased and that of Targis was increased. 4. In no-thermal cycling groups, Artglass showed mixed fracture modes(95%), but after thermal cycling, Artglass showed adhesive fracture modes(75%).

  • PDF

The effect of oxidation heat treatment on porcelain to metal bond strength (도재용착주조관용 비귀금속 합금의 사전 열처리가 도재-금속의 결합 강도에 미치는 효과)

  • Kim, C.Y.;Nam, S.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.43-46
    • /
    • 1997
  • The interfacial bond strength and microstructural analysis of pre-heat treated porcelain-fused-metal (PFM) were investigated using a mechanical three-point bending tester and scanning electron microscope(SEM). Four kinds of heat treated samples were prepared as follows; A: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, hold 3min under vacuum, B: heating $1200^{\circ}F\rightarrow1600^{\circ}F$ holding 1min, reheating $\rightarrow1850^{\circ}F$ under vacuum condition, C: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, holding 3min in the air, repeat same heat treatment process under vacuum condition, D: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, holding 1min in the air. The three-point bending test results shows that the interfacial bond strength of specimen B and C were higher than that of A and B. The SEM study reveals that Specimen C shows the highest surface density.

  • PDF

A Study on the Stress Corrosion Cracking Evaluation for Weld Joint of TMCP steel by SP-SSRT Method (SP-SSRT법에 의한 TMCP강 용접부의 응력부식균열 평가에 관한 연구)

  • 유효선;정희돈;정세희
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • The object of this paper is to evaluate SCC(stress corrosion cracking) susceptibility for parent metal and bond line region of weld joints which have the various weld heat input condtions in TMCP(thermo-mechanical control process) steel by SP-SSRT(small punch-slow strain rate test) method. And the SCC test results of TMCP steel are compared with those of the conventional HT50 steel which has te almost same tensile strength level like TMCP steel. The loading rate used was $3\times10^{-4}$mm/min and the corrosive environment was synthetic sea water. According to the test results, in the case of parent metal, TMCP steel showed higher SCC susceptibility than HT50 steel because of the high plastic strain level of ferrite microstructure obtained by accelerated cooling. And in the case of bond line, the both TMCP steel and HT50 steel showed low load-displacement behaviors and higher SCC susceptibility above 0.6. These results may be caused by theembrittled martensite structure on HT50 steel and by the coarsened grain and the proeutectoid ferrite structure obtained by the impart of accelerated cooling effect on TMCP steel.

  • PDF

A First Principles Calculation of the Coherent Interface Energies between Group IV Transition Metal Nitrides and bcc Iron (IV족 천이금속 질화물과 bcc Fe간 계면 에너지의 제일원리 연구)

  • Chung, Soon-Hyo;Jung, Woo-Sang;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.473-478
    • /
    • 2006
  • The coherent interface energies and misfit strain energies of Fe/XN (X=Ti, Zr, Hf) systems were calculated by first principles method. The interface energies in Fe/TiN, Fe/ZrN and Fe/HfN systems were 0.343, 0.114, and 0.030 $J/m^2$, respectively. Influence of bond energy was estimated using the discrete lattice plane/nearest neighbor broken bond(DLP/NNBB) model. It was found that the dependence of interface energy on the type of nitride was closely related to changes of the bond energies between Fe, X and N atoms before and after formation of the Fe/XN interfaces. The misfit strain energies in Fe/TiN, Fe/ZrN, and Fe/HfN systems were 0.239, 1.229, and 0.955 eV per 16 atoms(Fe; 8 atoms and XN; 8 atoms). More misfit strain energy was generated as the difference of lattice parameters between the bulk Fe and the bulk XNs increased.

A Study of Porcelain Bond Strength to Cast Ti Alloy with respect to Change of Surface Characteristic (표면 변화에 따른 주조용 티타늄 합금과 도재와의 결합강도 변화에 관한 연구)

  • Chung, In-Sung;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.65-71
    • /
    • 2008
  • The use of titanium in the field of dentistry has increased, due to their excellent biocompatibility, appropriate mechanical properties, corrosion-resistance and low price. However, many difficulties with the use of titanium for metal-ceramic crowns remain to be solved. The objective of this study was to evaluate the influence of surface modifications on the bonding characteristics of specific titanium porcelain bonded to cast titanium. The surfaces of Titanium were prepared with 4 test groups, i) sandblasted with particles of different size, ii) sandblasted after treated oxidization and oxidized after sandblast. We observed the bond strength and node aspect of titanium and ceramic, and respect to the methods of modifying surface of titanium by the test of mean roughness of surface, Scanning Electron Microscope, and 3-point flexural bend test. The results show that, 1. The specimens, which treated oxidization after process of sandblast with particles of 50um size, were the better for the bond strength in comparison with other specimen. 2. The specimen with process of sandblasting after oxidization treatment were the better for stability of the bond strength. 3. The wettability of titanium surface affect the bond strength.

  • PDF

Effects of cooling rate on Microstructure and Bond Strength in WC-Co/Cu/SM45C steel joint (WC-Co/Cu/SM45C강접합에 미세조직 및 접합강도에 미치는 냉각속도의 영향)

  • 정승부;양훈모
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.104-111
    • /
    • 1999
  • The interfacial microstructure and bond strength were examined for WC-Co/Cu/SM45C steel join using a nickel-plated copper in vacuum at 1323K for 0.6ks∼3.6ks. After bonding, microstructure in bonding interface was observed by OM(Optical Microscopy), SEM(Scanning Electron Microscopy) and EPMA(Eelectron Probe Micro Analyzer). The oil cooling was carried out at 353K, the cooling rate in air and furnace was 22K/s and 4.4K/s. respectively. It was found that dendritic widths increased with the content of cobalt and bonding times at 1323K. As a whole, bond strength values at the same bonding condition decreased in this order: WC-13wt.%Co/SM45Csteel. WC-8wt.%Co/SM45Csteel and WC-4wt.%Co/SM45Csteel. The bond strength of WC-13wt.%Co/S45C steel joint in oil cooling was 273MPa. This value was greatly higher than those of 125MPa in furnace cooling and 93MPa in air cooling at 1323K for 0.6ks. The bond strength values were found to be closely associated with the content of cobalt in WC-Co and cooling rate.

  • PDF

Evaluation of physical properties of Zn-Al metal coating according to arc metal spray surface treatment method (아크 금속 용사 표면 처리 방법에 따른 Zn-Al 금속 용사 피막의 물리적 특성 평가)

  • Jang, Jong-Min;Kim, Yeung-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.89-90
    • /
    • 2022
  • Arc metal spraying is a widely used method for improving the performance of construction structures such as corrosion resistance and electromagnetic wave shielding. However, when arc metal spraying is applied to a concrete structure, adhesion performance may deteriorate. Therefore, the effect of each surface treatment method on the physical properties between the arc metal spray coating and concrete was reviewed by evaluating the deposition efficiency and adhesion performance according to the arc metal spray surface treatment method (surface reinforcing agent, roughening agent, and sealing agent). As a result, it is suggested as an optimal surface treatment condition to induce non-interface failure by using a roughening agent and to improve the properties of concrete and metal coatings by applying a surface reinforcing agent and sealing agent.

  • PDF