Browse > Article
http://dx.doi.org/10.3740/MRSK.2006.16.8.473

A First Principles Calculation of the Coherent Interface Energies between Group IV Transition Metal Nitrides and bcc Iron  

Chung, Soon-Hyo (Materials Science & Technology Division, Korea Institute of Science & Technology)
Jung, Woo-Sang (Materials Science & Technology Division, Korea Institute of Science & Technology)
Byun, Ji-Young (Materials Science & Technology Division, Korea Institute of Science & Technology)
Publication Information
Korean Journal of Materials Research / v.16, no.8, 2006 , pp. 473-478 More about this Journal
Abstract
The coherent interface energies and misfit strain energies of Fe/XN (X=Ti, Zr, Hf) systems were calculated by first principles method. The interface energies in Fe/TiN, Fe/ZrN and Fe/HfN systems were 0.343, 0.114, and 0.030 $J/m^2$, respectively. Influence of bond energy was estimated using the discrete lattice plane/nearest neighbor broken bond(DLP/NNBB) model. It was found that the dependence of interface energy on the type of nitride was closely related to changes of the bond energies between Fe, X and N atoms before and after formation of the Fe/XN interfaces. The misfit strain energies in Fe/TiN, Fe/ZrN, and Fe/HfN systems were 0.239, 1.229, and 0.955 eV per 16 atoms(Fe; 8 atoms and XN; 8 atoms). More misfit strain energy was generated as the difference of lattice parameters between the bulk Fe and the bulk XNs increased.
Keywords
Coherent interface energy; Misfit strain energy; Transition metal nitrides; bcc iron; First principles calculation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. R. de Boer, R. Boom, W. C. M, Mattens, A. R. Medema and A. K. Niessen, Cohesion in Metals; Transition Metal Alloys, North-Holland, Amsterdam, (1988)
2 J. Hartford, Phys. Rev. B, 61, 2221 (2000)   DOI   ScienceOn
3 J. Hald and L. Korcakova, ISIJ Inter., 43, 420 (2003)   DOI   ScienceOn
4 Z. -G. Yang and M. Enomoto, Mater. Sci. Eng., A332, 184 (2002)   DOI   ScienceOn
5 N. Fujita, H. K. D. H. Bhadeshia and M. Kikuchi, Modelling Simul. Mater. Sci. Eng., 12, 273 (2004)   DOI   ScienceOn
6 N. Fujita and H. K. D. H. Bhadeshia, Mater. Sci. Technol., 17, 403 (2001)   DOI   ScienceOn
7 M. Marlo and V. Milman, Phys. Rev. B, 62, 2899 (2000)   DOI   ScienceOn
8 N. Fujita and H. K. D. H. Bhadeshia, ISIJ Inter., 42, 760 (2002)   DOI   ScienceOn
9 N. C. Hernandez and J. F.Sanz, Int. J. Mol. Sci., 2, 263 (2001)   DOI
10 N. C. Hernandez, J. Graciani and J. F. Sanz, Surf. Sci., 541, 217 (2003)   DOI   ScienceOn
11 M. Christensen, S. Dudiy and G. Wahnstroem, Phys. Rev. B, 65, 045408 (2002)   DOI   ScienceOn
12 D. Gall, S. Kodambaka, M. A. Wall, I. Petrov and J. E. Greene, J. Appl. Phys., 93, 9086 (2003)   DOI   ScienceOn
13 K. Kobayashi, Surf. Sci., 493, 665 (2001)   DOI   ScienceOn
14 L. M. Liu, S. Q. Wang and H. Q. Ye, J. Phys. Condens. Matter, 15, 8103 (2003)   DOI   ScienceOn
15 D. A. Porter and K. E. Easterling, Phase Transformation in Metals and Alloys, 2nd Ed, Chapman & Hall, London, UK, (1992)
16 Smithells Metals Reference Book, eds. W. F. Gale and T. C. Totemeier, Elsevier, Amsterdam, (2004)
17 J. D. Robson and H. K. D. H. Bhadeshia, Calphad, 20, 447 (1996)   DOI   ScienceOn
18 W. S. Jung, S, H. Chung and J. Y. Byun, J. Kor. Inst. Met. & Mater., 43, 626 (2005)
19 K. Laasonen, A. Pasquarello, R. Car, C. Lee and D. Vanderbilt, Phys. Rev. B, 41, 10142 (1993)   DOI   ScienceOn
20 J. P. Perdew, Electronic Structure of Solids, eds. P. Ziesche and H. Eschrig, Akademie Verlag, Berlin, (1991)
21 D. J. Siegel, L. G. Hector and J. B. Adams, Phys. Rev. B, 67, 092105 (2003)   DOI   ScienceOn
22 S. V. Dudiy and B. I. Lundqvist, Phys. Rev. B, 69, 125421 (2004)   DOI   ScienceOn
23 S. V. Dudiy and B. I. Lundqvist, Phys. Rev. B, 64, 045403 (2001)   DOI   ScienceOn