• Title/Summary/Keyword: Metal artifacts

Search Result 140, Processing Time 0.033 seconds

A Study on MR Imaging Method for The Patient with Inserting Shoulder Joint Suture Anchor (견관절 삽입술을 시행한 환자의 자기 공명 영상법에 관한 연구)

  • Park, Eui-Cheol;Bae, Seok-Hwan;Ryu, Yeun-Chul;Park, Young-Joon;Kim, Yong-Gwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.513-519
    • /
    • 2021
  • Metallic suture anchors are very useful and common fixation devices that are inserted into the target bone to sustain the tendon of a patient with musculus supraspinatus tendon ruptures. On the other hand, the presence of a metallic material prosthesis, such as a metal suture anchor, causes severe MR imaging artifacts, including field distortion, signal loss, and failure of fat suppression. The difference in magnetic susceptibility between metal and other organic materials causes magnetic field distortion surrounding the prosthesis. The resulting magnetic field inhomogeneity makes the images with a lower signal-to-noise ratio and distortion. For a patient with a suture anchor implanted, MR imaging is the golden standard for determining the postoperative prognosis, and a fat-saturation sequence is one of the imaging methods most affected by metal-induced artifacts. In this study, three fat-saturation sequences were compared. Artifact quantification and contrast comparison between the supraspinatus tendon and the surrounding muscle were presented. The images obtained using the STIR pulse sequence showed fewer susceptibility artifacts and better visibility in the supraspinatus tendon and the tissue area. Therefore, the STIR sequence is the most appropriate fat-saturation imaging method for patients with a metallic prosthesis.

A study on the Cochlear View Radiography in Multichannel Cochlear Implantees

  • Kweon Dae Cheol;Kim Seong Lyong;Chung Kyung Mo;Kim Hae Seong;Lee Yong Woo
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.25 no.1
    • /
    • pp.20-20
    • /
    • 1999
  • Purpose : Cochlear implant poses a contraindication to the magnetic resonance imaging (MRI) process, because MRI generates artifacts, inducing an electrical current and causing device magnetization. CT is relatively expensive and the metal electrodes scat

  • PDF

Reduction of Metal Artifact by Using VAT-SEMAC in MRI (VAT-SEMAC을 이용한 보철물에 의한 허상 감소)

  • Kim, Hyung-Tae;Lim, Jong-Nam;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.227-232
    • /
    • 2019
  • MRI examination for patients with metal objects has in poor image quality. Metallic implants can result in poor image because magnetic susceptibility causes signal loss and distortion and makes poor imaging, which is called magnetic susceptibility artifact or metal artifact. There are several approaches to reduce metal artifacts. In this study, we study the reduction of metal artifact by VAT and SEMAC techniques. A metal implant used for orthopedic surgery was attached to the phatom and the distortion caused by the artifact was measured under T1WI and T2WI protocols. Several techniques of VAT only and VAT and SEMAC for the reduction of metal artifact were compared. The metal artifact showed a reduction of at least 8% to a maximum of 26% in the VAT-SEMAC. The VAT-SEMAC technique can be applied to patients with orthopedic implants to improve image quality. If scan time and image quality are simultaneously considered in VAT-SEMAC technique, metal artifact will be reduced in clinical practice.

Effect of Metals used in Orthopedic on Magnetic Resonance Imaging II (정형 보철용 금속이 자기공명영상에 미치는 영향 II)

  • Kim, Hyeong-Gyun;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.115-120
    • /
    • 2012
  • Metals used orthopedic in human magnetic resonance imaging scan of the metal to be inserted, The information to users about the image distortion is to propose a basis for judgment. Metals used orthopedic on Stainless, Titanium and Clip using ferromagnetic artifacts and distortion of the image were measured. Using Phantom "Effect of Metals used in Orthopedic on Magnetic Resonance ImagingI" pig in a paper subsequently was carried out using the same bone. Experimental results using a pure Titanium is a relatively high diagnostic value was found that.

Lineage of Horse Bridle Kept in Yatsushiro Shrine in Kamishima (가미시마 야츠시로 신사(神島八代神社) 소장 재갈의 계보)

  • Shimizu, Yasuji
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.4
    • /
    • pp.156-179
    • /
    • 2016
  • Yatsushiro Shrine on the island of Kamishima located in Ise Bay, Japan, contains many cultural artifacts with ancient mirrors in significant numbers. Also included among the artifacts are horse gags and reins that are clearly of the same lineage as the horse harnesses from the unified Shilla era and Goryeo era in Korean history. Type classification and position establishment were carried out on the horse reins kept in the Yatsushiro shrine, including items such as those mentioned previously. Type A horse harness can be classified into 3 types. Based on this classification scheme, the harness type in the Yatsushiro shrine was found to belong to the most recent period. The blacksmith workshop that made the harness was producing iron wares and bronze wares, and it possessed metal forging and metal casting technologies. Note, however, that it was primarily a workshop where iron wares were made. The parts that were visible from the outside when the harness was attached were made from composite bronze, and the reins and bridle linkage were made from iron. Such integration of bronze ware production techniques and iron ware production techniques was an attempt at enhancing the practicality and embellishments on the harness.

Feasibility of Improving the Accuracy of Dose Calculation Using Hybrid Computed Tomography Images: A Phantom Study

  • Jeon, Hosang;Kim, Dong Woon;Joo, Ji Hyeon;Ki, Yongkan;Kim, Wontaek;Park, Dahl;Nam, Jiho;Kim, Dong Hyeon
    • Progress in Medical Physics
    • /
    • v.32 no.1
    • /
    • pp.18-24
    • /
    • 2021
  • Purpose: Kilovoltage computed tomography (kV-CT) is essential for radiation treatment planning. However, kV-CT images are significantly distorted by artifacts when a metallic prosthesis is present in the patient's body. Thus, the accuracies of target delineation and treatment dose calculation are inevitably lowered. We evaluated the accuracy of the calculated doses using an image restoration method with hybrid CT, which was introduced in our previous study. Methods: A cylindrical phantom containing four metals, namely, silver, copper, tin, and tungsten, was scanned using kV-CT and megavoltage CT to produce hybrid CT images. We created six verification plans for three head and neck patients on kV-CT and hybrid CT images of the phantom and calculated their doses. The actual doses were measured with film patches during beam delivery using tomotherapy. We used the gamma evaluation method to compare dose distribution between kV-CT and hybrid CT with three gamma criteria, namely, 3%/3 mm, 2%/2 mm, and 1%/1 mm. Results: The gamma pass rates decreased as the gamma criteria were strengthened, and the pass rate of hybrid CT was higher than that of kV-CT in all cases. When the 1%/1 mm criterion was used, the difference in gamma pass rates between them was up to 13%p. Conclusions: According to our findings, we expect that the use of hybrid CT can be a suitable approach to avoid the effect of severe metal artifacts on the accuracy of dose calculation and contouring.

Impact of the spatial orientation of the patient's head, metal artifact reduction, and tube current on cone-beam computed tomography artifact expression adjacent to a dental implant: A laboratory study using a simulated surgical guide

  • Matheus Barros-Costa;Julia Ramos Barros-Candido;Matheus Sampaio-Oliveira;Deborah Queiroz Freitas;Alexander Tadeu Sverzut;Matheus L Oliveira
    • Imaging Science in Dentistry
    • /
    • v.54 no.2
    • /
    • pp.191-199
    • /
    • 2024
  • Purpose: The aim of this study was to evaluate image artifacts in the vicinity of dental implants in cone-beam computed tomography (CBCT) scans obtained with different spatial orientations, tube current levels, and metal artifact reduction algorithm (MAR) conditions. Materials and Methods: One dental implant and 2 tubes filled with a radiopaque solution were placed in the posterior region of a mandible using a surgical guide to ensure parallel alignment. CBCT scans were acquired with the mandible in 2 spatial orientations in relation to the X-ray projection plane (standard and modified) at 3 tube current levels: 5, 8, and 11 mA. CBCT scans were repeated without the implant and were reconstructed with and without MAR. The mean voxel and noise values of each tube were obtained and compared using multi-way analysis of variance and the Tukey test(α=0.05). Results: Mean voxel values were significantly higher and noise values were significantly lower in the modified orientation than in the standard orientation (P<0.05). MAR activation and tube current levels did not show significant differences in most cases of the modified spatial orientation and in the absence of the dental implant (P>0.05). Conclusion: Modifying the spatial orientation of the head increased brightness and reduced spatial orientation noise in adjacent regions of a dental implant, with no influence from the tube current level and MAR.

Lifetime Prediction of Acrylic Resin for Metal Artifacts Reinforcement (금속유물 강화용 아크릴수지 수명예측)

  • Gwak, Hongin;Kim, Jinkuk
    • Conservation Science in Museum
    • /
    • v.10
    • /
    • pp.75-88
    • /
    • 2009
  • The purpose of this study is to determine the lifetime of acrylic resin ParaloidTM B-72(EMA copolymer), which is widely used as a coating for metallic artifacts to prevent corrosion. Lifetime factor with temperature, selected chromaticity as the test parameter for lifetime prediction. The found result is that the temperature is the most crucial factor influencing the prediction of the lifetime of the EMA copolymer coated iron surface against corrosion. The simulation results, based on Arrhenius Equation, showed that the lifetime prediction of the EMA coated iron surface was 24.5 years at 16℃, 17.1 years at 20℃, and 12.0 years at 24℃, respectively.

Dosimetric Impact of Ti Mesh on Proton Beam Therapy

  • Cho, Shinhaeng;Goh, Youngmoon;Kim, Chankyu;Kim, Haksoo;Jeong, Jong Hwi;Lim, Young Kyung;Lee, Se Byeong;Shin, Dongho
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.144-148
    • /
    • 2017
  • When a high density metallic implant is placed in the path of the proton beam, spatial heterogeneity can be caused due to artifacts in three dimensional (3D) computed tomography (CT) scans. These artifacts result in range uncertainty in dose calculation in treatment planning system (TPS). And this uncertainty may cause significant underdosing to the target volume or overdosing to normal tissue beyond the target. In clinical cases, metal implants must be placed in the beam path in order to preserve organ at risk (OARs) and increase target coverage for tumors. So we should introduce Ti-mesh. In this paper, we measured the lateral dose profile for proton beam using an EBT3 film to confirm dosimetric impact of Ti-mesh when the Ti-mesh plate was placed in the proton beam pathway. The effect of Ti-mesh on the proton beam was investigated by comparing the lateral dose profile calculated from TPS with the film-measured value under the same conditions.

Microstructure investigation of iron artifacts excavated from Kkonmoe relic located in Suwon-si (수원시 꽃뫼 유적 출토 철제유물의 미세조직 분석)

  • Yu, Jae-Eun;Go, Hyeong-Sun;Lee, Jae-Sung
    • 보존과학연구
    • /
    • s.23
    • /
    • pp.131-147
    • /
    • 2002
  • Kkonmoe relic located in Jangan-gu, Suwon-si, Gyeonggi-do Provinceis an example of the wide chronology from the Three Kingdoms Period to Joseon Dynasty. Examinations on a forged iron ax, a cast iron ax and an iron sickle excavated from this relic revealed the microstructure structure of the metal and the manufacturing technologies. Microstructure investigation was carried out with a metallurgical microscope and a Vickers hardness tester was used to measure the hardness of the micro structures. The test results show that the forged iron ax has a ferrite and pearlitestructure. It is made of low carbon steel and then carbonized to increase carbon content. After carbonization, the surface grains are reworked and the surface decarbonized. In case of the iron sickle, it is forged from low carbon steel, then carbonized and hardened, to increase overall strength. The sickle blade is carbonized and quenched after forging, resulting in afirm, solid blade. Heat treatment to remove brittleness is not applied to the cast ironartifact, which is manufactured by solidifing hypo-eutectic cast iron with a3-4% carbon content and white cast iron. All artifacts are produced from steel and subjected to a carbonization process. To increase hardness of the blade, additional heat treatment is applied.

  • PDF