• Title/Summary/Keyword: Metal alloy

Search Result 1,893, Processing Time 0.039 seconds

A Study on the Micro Vibration Forming of Al-based Superplastic Alloy and Zr-based Bulk Metallic Glass (Al계 초소성합금과 Zr계 비정질합금의 마이크로 진동성형에 관한 연구)

  • Son, Seon-Cheon;Park, Kyu-Yeol;Na, Young-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.193-200
    • /
    • 2007
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Al5083 superplastic alloy with very small grains has a great advantage in achieving micro deformation under low stress due to its relatively low strength at a specific high temperature range. Micro forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, the micro formability of Al5083 superplastic alloy and bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$, was investigated with the specially designed micro vibration forming system using pyramid-shape, V-shape and U-shape micro die pattern. With these dies, micro vibration forming was conducted by varying the applied load, time. Micro formability was estimated by comparing the hight of formed shape using non-contact surface profiler system. The vibration load effect to metal flow in the micro die and improve the micro formability of Al5083 superplastic alloy and $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG).

6xxx Series Al Alloy Sheets with High Formability Produced by Twin-roll Strip Casting and Asymmetric Rolling (쌍롤 박판주조법 및 이속압연으로 제조한 고성형성 6xxx계 Al 합금 판재)

  • Kim, Hong-Kyu;Cho, Jae-Hyung;Kim, Hyoung-Wook;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.503-509
    • /
    • 2012
  • We report on the feasibility of producing 6xxx series Al alloy sheets using a combination of twin-roll strip casting and asymmetric rolling. The Al alloy sheets produced in this study exhibited an excellent formability ($\bar{r}=1.2$, ${\Delta}r=0.17$) and mechanical properties (${\sigma}_{TS}{\sim}260MPa$, ${\varepsilon}>30%$), which cannot be feasibly obtained via the conventional technique based on ingot casting and conventional rolling. The enhanced formability as evaluated in terms of $\bar{r}$ and ${\Delta}r$ was clarified by examining the evolution of textures associated with strip casting and subsequent thermo-mechanical treatments. The evaluation of the formability leads us to conclude that the combined technique based on strip casting and asymmetric rolling is a feasible process for enhancing the formability of Al alloy sheets to a level beyond which the conventional technique can reach.

Electrolysis for NiW Functional Alloy Plating (NiW 기능성 합금도금을 위한 전해)

  • Jeong, Goo-Jin;Lee, Churl-Kyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • A NiW functional alloy plating was investigated as variables of metal ion concentration, complexing agent, temperature, pH and applied current density. Even if numerous studies on reaction mechanism of NiW induced codeposition were carried out during couples of decade, it has not been acceptable reaction mechanism. This study was focused on the effect of the plating variables on the alloy composition in the NiW alloy plating. Applied current density could control mainly the alloy composition rather than other plating variables. It has also been confirmed that the functional alloy plating such as layered or gradient plating was possible by controlling applied current density.

Analysis of Overlay Weld Effect on Preventing PWSCC in Dissimilar Metal Weld (이종금속 용접부의 일차수응력부식균열 방지를 위한 예방정비 용접 효과 분석)

  • Lee, Seung-Gun;Oh, Chang-Kyun;Park, Heung-Bae;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.97-101
    • /
    • 2010
  • PWSCC(Primary Stress Corrosion Cracking) in Alloy 82/182 butt welds is the problem affecting safety and integrity of nuclear power plant. PWSCC can be occurred in the area that is at high magnitude of tensile residual stress, such as Alloy 82/182 dissimilar metal welds in PZR(pressurizer) nozzles. There have been a number of incidents recently at the dissimilar metal welds in overseas nuclear power plants. Overlay weld is the one of the effective methods to decrease tensile residual stress of inside surface, which will result in preventing PWSCC. In this paper, overlay weld conditions on the purpose of preventing PWSCC was explained and the benefit of the overlay weld was confirmed performing finite element analysis.

Shear bond strength of veneering ceramic to coping materials with different pre-surface treatments

  • Tarib, Natasya Ahmad;Anuar, Norsamihah;Ahmad, Marlynda
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.339-344
    • /
    • 2016
  • PURPOSE. Pre-surface treatments of coping materials have been recommended to enhance the bonding to the veneering ceramic. Little is known on the effect on shear bond strength, particularly with new coping material. The aim of this study was to investigate the shear bond strength of veneering ceramic to three coping materials: i) metal alloy (MA), ii) zirconia oxide (ZO), and iii) lithium disilicate (LD) after various pre-surface treatments. MATERIALS AND METHODS. Thirty-two (n = 32) discs were prepared for each coping material. Four pre-surface treatments were prepared for each sub-group (n = 8); a) no treatment or control (C), b) sandblast (SB), c) acid etch (AE), and d) sandblast and acid etch (SBAE). Veneering ceramics were applied to all discs. Shear bond strength was measured with a universal testing machine. Data were analyzed with two-way ANOVA and Tukey's multiple comparisons tests. RESULTS. Mean shear bond strengths were obtained for MA ($19.00{\pm}6.39MPa$), ZO ($24.45{\pm}5.14MPa$) and LD ($13.62{\pm}5.12MPa$). There were statistically significant differences in types of coping material and various pre-surface treatments (P<.05). There was a significant correlation between coping materials and pre-surface treatment to the shear bond strength (P<.05). CONCLUSION. Shear bond strength of veneering ceramic to zirconia oxide was higher than metal alloy and lithium disilicate. The highest shear bond strengths were obtained in sandblast and acid etch treatment for zirconia oxide and lithium disilicate groups, and in acid etch treatment for metal alloy group.

AN EXPERIMENTAL STUDY ON THE RESIDUAL STRESS AND BOND STRENGTH OF CERAMO-METAL SYSTEM (치과도재용(齒科陶材用) 합금(合金)과 도재간(陶材間)의 잔류응력(殘溜應力) 및 결합강도(結合强度)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Gi-Jin;Bae, Tae-Seong;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.67-84
    • /
    • 1991
  • This study was carried out to investiagate the residual stress caused by the mismatch of thermal expansion and the bond failure resistance of alloy-porcelain specimens. The thermal expansions of alloys and porcelains were measured by using a straight push-rod dilatometer. Porcelain glass transition temperatures, thermal expansion coefficients, and thermal compatibility indices were derived from length-versus-temperature curves. Strain gauges were used to experimentally determine the Young's moduli of porcelains, the residual stresses of porcelain surface, and tensile bond strengths of the specimens of simulated porcelain metal crown. The obtained results were as follows: 1. The coefficients of thermal expansion for alloys were the minimum of $13.53\mu/^{\circ}C$ and the maximum of $20.11\mu/^{\circ}C$ in the range of $100\sim600^{\circ}C$ and those for porcelains were the minimum of $7.72\mu/^{\circ}C$ and the maximum of $31.24\mu/^{\circ}C$ in the range of $100\sim500^{\circ}C$. 2. The glass transition temperature of porcelains exhibited the same value without my relation to the healing rate, and the thermal disharmony of porcelain and alloy was more affected by porcelains than by the alloys. 3. The Young's moduli of body porcelains were larger than those of opaque porcelains(P<0.01) 4. It seemed that the residual stresses of porcelain surfaces in the porcelainalloy systems were more affected by porcelains than by alleys. 5. The bond strengths of the procelain-base metal alloy systems were larger than those of the porcelain-precious metal alloy systems. The fracture strengths of porcelain surfaces showed significant difference between porcelains (P<0.05).

  • PDF

A parametric Study in Incremental Forming of Magnesium Alloy Sheet (인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형변수에 관한 연구)

  • Park, J.G.;You, B.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.412-419
    • /
    • 2008
  • Using lightweight materials in vehicle manufacturing in order to reduce energy consumption is one of the most effective approach to decrease pollutant emissions. As a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed(HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. Here we try the possibility of sheet metal forming at room temperature by adopting incremental forming technique with rotating tool, which is so called as rotational-incremental sheet forming(RISF). In this rotational-incremental sheet forming the spindle tool rotates on the surface of the sheet metal and moves incrementally with small pitch to fit the sheet metal on the desired shape. There are various variables defining the formability of sheet metals in the incremental forming such as speed of spindle, pitch size, lubricants, etc. In this study, we clarified the effects of spindle speed and pitch size upon formability of magnesium alloy sheets at room temperature. In case of 0.2, 0.3 and 0.4mm of pitch size with hemispherical rotating tool of 6.0mm radius, the maximum temperature at contact area between rotating tool and sheet metal were $119.2^{\circ}C,\;130.8^{\circ}C,\;and\;177.3^{\circ}C$. Also in case of 300, 500, and 700rpm of spindle speed, the maximum temperature at the contact area were $109.7^{\circ}C,\;130.8^{\circ}C\;and\;189.8^{\circ}C$.

Evaluation of PWSCC at Dissimilar Metal Butt Welds in NPP (원전 이종금속 맞대기용접부 PWSCC 균열건전성평가)

  • Lee, Sung-Ho;Lee, Kyoung-Soo;Oh, Chang-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1047-1052
    • /
    • 2012
  • Primary water stress corrosion cracking (PWSCC) instances have been reported in the Alloy 600 reactor pressure vessel head penetration nozzle and the Alloy 82/182 dissimilar metal butt weld nozzle in several PWRs. Therefore, in-service inspection programs have been adopted worldwide to prevent failure at the weld region. If a PWSCC is observed at the dissimilar metal weld region during inspection, its structural integrity should be evaluated; however, this requires considerable time and effort, and this might lead to a decrease in the plant utilization coefficient. To prevent this, KHNP-CRI have established integrity assessment criteria and developed a computer program for the fast evaluation and judgment of PWSCC. In this paper, the results and current status of the same are presented. Through this study, criteria for the structural integrity evaluation of PWSCC have been established, and a computer program has been developed to realize technical means for the evaluation of PWSCC structural integrity.