• Title/Summary/Keyword: Metal Transfer

Search Result 960, Processing Time 0.034 seconds

Nanoplasmonic Spectroscopic Imaging and Molecular Probes

  • Choe, Yeon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.85-85
    • /
    • 2013
  • Label-free, sensitive and selective detection methods with high spatial resolution are critically required for future applications in chemical sensor, biological sensor, and nanospectroscopic imaging. Here I describe the development of Plasmon Resonance Energy Transfer (PRET)-based molecular imaging in living cells as the first demonstration of intracellular imaging with PRET-based nanospectroscopy. In-vivo PRET imaging relied on the overlap between plasmon resonance frequency of gold nanoplasmonic probe (GNP) and absorption peak frequencies of conjugated molecules, which leads to create 'quantized quenching dips' in Rayleigh scattering spectrum of GNP. The position of these dips exactly matched with the absorption peaks of target molecules. As another innovative application of PRET, I present a highly selective and sensitive detection of metal ions by creating conjugated metal-ligand complexes on a single GNP. In addition to conferring high spatial resolution due to the small size of the metal ion probes (50 nm in diameter), this method is 100 to 1,000 folds more sensitive than organic reporter-based methods. Moreover, this technique achieves high selectivity due to the selective formation of Cu2+complexes and selective resonant quenching of GNP by the conjugated complexes. Since many metal ion ligand complexes generate new absorption peak due to the d-d transition in the metal ligand complex when a specific metal ion is inserted into the complex, we can match with the scattering frequency of nanoplasmonic metal ligand systems and the new absorption peak.

  • PDF

Sequential Formation of Multiple Gap States by Interfacial Reaction between Alq3 and Alkaline-earth Metal

  • Kim, Tae Gun;Kim, Jeong Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.129.2-129.2
    • /
    • 2013
  • Electron injection enhancement at OLED (organic light-emitting diodes) cathode side has mostly been achieved by insertion of a low work function layer between metal electrode and emissive layer. We investigated the interfacial chemical reactions and electronic structures of alkaline-earth metal (Ca, Ba)/Alq3 [tris(8-hydroxyquinolinato)aluminium] and Ca/BaF2/Alq3 using in-situ X-ray & ultraviolet photoelectron spectroscopy. The alkaline-earth metal deposited on Alq3 generates two energetically separated gap states in sequential manner. This phenomenon is explained by step-by-step charge transfer from alkali-earth metal to the lowest unoccupied molecular orbital (LUMO) states of Alq3, forming new occupied states below Fermi level. The BaF2 interlayer initially prevents from direct contact between Alq3 and reactive Ca metal, but it is dissociated into Ba and CaF2. However, as the Ca thickness increases, the Ca penetrates the interlayer to directly participate in the reaction with underlying Alq3. The influence of the multiple gap state formation by the interfacial chemical reaction on the OLED performance will be discussed.

  • PDF

The Catalytic Effect of Alkali Metal Ions on Reactions of 8-(5-Nitroquinolyl) 2-Furoate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Eum, Ik Hwan;Lee, Seong Eun;Min, Ji Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.669-672
    • /
    • 2001
  • Pseudo-first-order rate constants have been measured spectrophotometrically for the title reactions. The plot of kobs vs the concentration of alkali metal ethoxides is linear for the reactions performed in the presence of complexing age nt, 18-crown-6 ether, but curved upwardly for the corresponding reactions performed in the absence of the complexing agent, indicating that the alkali metal ions studied in this study behave as a catalyst. The catalytic effect was found to increase in the order Li+ << K+ ${\leq}$ Na+. Second-order rate constants were determined for the reactions with dissociated free ethoxide (kEtO-) and with ion paired alkali metal ethoxides (kEtO-M+ ) from ion pairing treatments. The magnitude of catalytic effect (kEtO-M+/kEtO-) was found to be 2.3, 9.5 and 8.7 for the reaction of 8-(5-nitroquinolyl) 2-furoate, while 1.4, 3.6 and 4.2 for that of 4-nitrophenyl 2-furoate, indicating that the catalytic effect is larger in the reaction of the former substrate than in that of the latter one. The larger catalytic effect was attributed to two possible complexing sites with alkali metal ions in the former substrate.

Thickness control in metal-strip milling process (압연 공정에서의 판 두께 제어)

  • 신기현;홍환기;김광배;오상록;안현식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1141-1146
    • /
    • 1993
  • The problem of tension control in metal-strip processing line is discussed. A new mathematical dynamic model which relates tension change, motor-speed change and roll-gap change is developed. Through the computer simulation of this model, parameter sensitivity, the tension transfer phenominon, and static and dynamic characteristics of strip tension were studied. Guidelines are developed to help one selecting locations of the master-speed drive in multi-drive speed control for tension adjustment and reducing the effect of interaction between tension and roll gap control.

  • PDF

New SMOLED Deposition System for Mass Production

  • Lee, J.H.;Kim, C.W.;Choi, D.K.;Kim, D.S.;Bae, K.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.407-410
    • /
    • 2003
  • We will introduce our new concept deposition system for SMOLED manufacturing in this conference. This system is designed to deposit organic and metal material to downward to overcome the limit of substrate size and process tact time hurdle for OLED mass production, and is organized with organic deposition chamber, substrate pre-cleaning chamber, metal deposition chamber and encapsulation system. These entire process chambers are integrated with linear type substrate transfer system. We also compare our new SMOLED manufacturing system with conventional vacuum deposition systems, and show basic organic thin film property data, organic material deposition property data, and basic device property.

  • PDF

Closed-loop Sheet Metal Forming Using Dieless Forming Apparatus (무금형 성형장치를 이용한 폐루프 판재성형)

  • 양승훈;박종우;홍예선;양현석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.62-65
    • /
    • 2002
  • A dieless forming system which consists of hydraulic punch elements and elastomer/fluid pads, was developed for sheet metal forming. 2-D curved surface forming was carried out using open-loop, closed-loop, and repeated forming method. Closed-loop exhibited higher decision than open-loop forming. Repeated forming also showed reduced spring back and possibility of high precision.

  • PDF

The Analysis of Characteristics of GMAW using Sound Signal (음향 신호 분석에 의한 GMAW의 특성분석)

  • 조택동;양상민;양성빈
    • Proceedings of the KWS Conference
    • /
    • 2002.05a
    • /
    • pp.65-67
    • /
    • 2002
  • The gas metal arc welding(GMAW) is regarded as one of the best candidate for welding automation in industrial joining application. It is important to monitor the weld quality for the high performance of weld automation. The measured analog signal is frequency analyzed by digital signal process method. In order to observe the welding phenomena and control welding condition, arc light, voltage, and current are measured at the same time. They are analyzed and compared with arc sound. for these experiments, a power source of constant voltage characteristics was used in the pure metal transfer mode.

  • PDF

Study on Graphene Thin Films Grown on Single Crystal Sapphire Substrates Without a Catalytic Metal Using Pulsed Laser Deposition

  • Na, Byoung Jin;Kim, Tae Hwa;Lee, Cheon;Lee, Seok-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.70-73
    • /
    • 2015
  • Many studies have used chemical vapor deposition (CVD) to grow graphene. However, CVD is inefficient in terms of production costs, and inefficient for mass production because a transfer process using a catalytic metal is needed. In this study, graphene thin films were grown on single crystal sapphire substrates without a catalytic metal, using pulsed laser deposition (PLD) to resolve these problems. In addition, the growth of graphene using PLD was confirmed to have a close relationship with the substrate temperature.

On eliminating electrochemical impedance signal noise using Li metal in a non-aqueous electrolyte for Li ion secondary batteries

  • Park, Chul-Wan
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.180-183
    • /
    • 2011
  • Li metal is accepted as a good counter electrode for electrochemical impedance spectroscopy (EIS) as the active material in Li-ion and Li-ion polymer batteries. We examined the existence of signal noise from a Li-metal counter quantitatively as a preliminary study. We suggest an electrochemical cell with one switchable electrode to obtain the exact impedance signal of active materials. To verify the effectiveness of the switchable electrode, EIS measurements of the solid electrolyte interphase (SEI) before severe $Li^+$ intercalation to SFG6 graphite (at > ca. 0.25 V vs. Li/$Li^+$) were taken. As a result, the EIS spectra without the signal of Li metal were obtained and analyzed successfully for the following parameters i) $Li^+$ conduction in the electrolyte, ii) the geometric resistance and constant phase element of the electrode (insensitive to the voltage), iii) the interfacial behavior of the SEI related to the $Li^+$ transfer and residence throughout the near-surface (sensitive to voltage), and iv) the term reflecting the differential limiting capacitance of $Li^+$ in the graphite lattice.