• Title/Summary/Keyword: Metal Surface Defects

Search Result 181, Processing Time 0.029 seconds

Detection of the Defect on the Metal Surface Using the Modulated Microwave (변조 고주파에 의한 금속표면 결함 검출)

  • Joo, G.T.;Jung, S.H.;Song, K.Y.;Kim, J.O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.173-179
    • /
    • 1999
  • The defects on the metal surface. such as the ended circular pressed hole. the penetrated circular drilled hole, and the linear hollow lanes have been investigated by means of the microwave. In this experiment, frequency was set at 9.2GHz with 3kHz modulation, and the methods of reflection, transmission, fixed carrier frequency, and mod-demodulated technique have been used for investigating defects. The magnitudes of the microwave signals have been changed at the ended circular pressed hole and the penetrated circular drilled hole. The defect sizes that were estimated from the reflected microwave signals had the dimensions enlarged by twice the original size of the penetrated circular drilled hole and 2.5 times the original size of the ended circular pressed hole. The magnitudes of the reflected microwave signals from the linear hollow lane have increased with expansion of the width of the notch. In the linear hollow lane with the depth of 2.4mm, the reflected microwave signals versus the defect widths had a maximum value at the defect width of 50mm, and in the linear hollow lanes with the depths of 1.2mm and 0.45mm, the reflected microwave signals versus the defects widths had the maximum values each at the defect depths of 55mm.

  • PDF

Epitaxial Growth of Bi2Se3 on a Metal Substrate

  • Jeon, Jeong-Heum;Jang, Won-Jun;Yun, Jong-Geon;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.306-306
    • /
    • 2011
  • Three dimensional(3D) topological insulators(TIs) of Bi binary alloys are characterized by a bulk energy gap with strong spin-orbit coupling and metallic surface states protected by time-reversal symmetry. It was reported that film forms of such materials were advantageous over bulk forms due to less defect density and better crystallinity. So far, the films have been prepared on several substrates including semiconductors and graphene. But, there were no studies on metal substrates. For electronic transport experiments and device applications, it is necessary to know epitaxial relation between TIs and metal electrodes. In this study, Atomically flat films of Bi2Se3 were grown on a Au(111) metal substrate by in-situ molecular beam epitaxy. Using home-built scanning tunneling microscope, we observed hexagonal atomic structures which corresponded to the outmost selenium atomic layer of Bi2Se3. Triangular-shaped defects known as Selenium vacancy were also found.

  • PDF

CAE of Sheet Metal Forming Processes - The Present Status and The Future Prospect (박판성형에서의 CAE - 현황과 전망)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.25-36
    • /
    • 1994
  • The sheet metal forming process is one of the most important manufacturing processes in the modern industry. From the view point of mechanics involved, it is very difficult to predict whether a newly designed sheet metal part can be formed without defects such as fracture, wrinkling and surface unevenness, etc. In order to reduce the effort taken in the trial-and-error process and to control the process effectively, a systematic method for process modeling is to required. The aim of sheet forming simulation through the process modeling is to reduce the lead time for die disign and manufacture by process modeling is to reduce the lead time for die design and manufacture by means of investigating the deformation mechanics and the mutual interaction between the process parameters. In this paper, the necessity, the present status, and the future technology about CAE of sheet forming simulation have been discussed.

Molecular Behavior and Electro-Chemical Properties of Dendrimer and Staff-type Polymer Monolayers in Crown Function Group (크라운 기능기를 포함한 덴드리머 및 Staff-type 고분자 단분자막의 분자거동 및 전기ㆍ화학적 특성)

  • 장정수
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.213-213
    • /
    • 2003
  • We investigated the monolayer behavior at the air-water interface with metal solution, the surface morphologies and the electrical properties such as conductivity, The calculated conductivity values of pure water subphase and its complexes with L $i^{+}$ ions are 5.6$\times$10$^{-l6}$ and 1.9$\times$10$^{-14}$ [S/cm], respectively. And the calculated barrier height D values of pure water subphase and its complexes with Li. ions are 0.70 and 0.66 [eV], respectively. We also attempted to fabricate a crown dendrimer Langmuir-Blodgett (LB) films containing functional end group that could form a complex structure with metal ions. Also, we investigated the surface activity of dendrimer films at air-water interface. In AFM images. the larger domains irregularly shaped structures on the top while the smaller ones were free from such defects. In conclusion, it is demonstrated that the metal ion around dendrimer and polymer included crown function group can contribute to make formation of network structure among crown function group and result in change of electrical properties.s.s.

Molecular Behavior and Electro-Chemical Properties of Dendrimer and Staff-type Polymer Monolayers in Crown Function Group (크라운 기능기를 포함한 덴드리머 및 Staff-type 고분자 단분자막의 분자거동 및 전기ㆍ화학적 특성)

  • 장정수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.5
    • /
    • pp.213-218
    • /
    • 2003
  • We investigated the monolayer behavior at the air-water interface with metal solution, the surface morphologies and the electrical properties such as conductivity, The calculated conductivity values of pure water subphase and its complexes with L $i^{+}$ ions are 5.6$\times$10$^{-l6}$ and 1.9$\times$10$^{-14}$ [S/cm], respectively. And the calculated barrier height D values of pure water subphase and its complexes with Li. ions are 0.70 and 0.66 [eV], respectively. We also attempted to fabricate a crown dendrimer Langmuir-Blodgett (LB) films containing functional end group that could form a complex structure with metal ions. Also, we investigated the surface activity of dendrimer films at air-water interface. In AFM images. the larger domains irregularly shaped structures on the top while the smaller ones were free from such defects. In conclusion, it is demonstrated that the metal ion around dendrimer and polymer included crown function group can contribute to make formation of network structure among crown function group and result in change of electrical properties.s.s.

The Effects of cathodic protection on fracture toughness of buried gas pipeline (매설가스배관의 음극방식이 배관의 파괴인성에 미치는 영향)

  • Kim, Cheol-Man;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.573-578
    • /
    • 2001
  • For the corrosion protect ion of the natural gas transmission pipelines, two methods are used, cathodic protection and coating technique. In the case of cathodic protection, defects are embrittled by occurring hydrogen at the crack tip or material surface. It is however very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed CTOD test ing with varying test conditions, such as the potential and current density. The CTOD of the base steel and weld metal showed a strong dependence of the test conditions. The CTOD decreased with increasing cathodic potential and current density. The morphology of the fracture surface showed quasi-cleavage. Hydrogen introduced fractures, caused by cathodic overprotection.

  • PDF

Effect of Bead Surface Treatments and Bead Shapes on the Drawing and Friction Characteristics in Drawbead Forming of Sheet Metal (판재의 드로우비드 성형시 비드표면처리와 비드형상이 인출 및 마찰특성에 미치는 효과)

  • Lee, Dong-Hwal;Ryu, Jong-Soo;Chung, Woo-Chang;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.2
    • /
    • pp.105-111
    • /
    • 2005
  • In sheet metal forming, drawbeads are often used to control uneven material flow, which may cause defects such as wrinkles, fractures, surface distortion and springback. Appropriate setting and adjusting of the drawbead force is one of the most important parameters in sheet forming process control. Therefore in this study, drawbead test was performed at various bead surface treatment conditions to clarify the frictional characteristics between sheet and drawbead. Furthermore, the differences in drawing force between circular and rectangular shape beads have also been measured to estimate the effectiveness of bead shape on the material flow control. The results show that drawing and friction characteristic were strongly influenced by surface treatments of bead and bead shapes.

Correlation between Oxygen Related Bonds and Defects Formation in ZnO Thin Films by Using X-ray Diffraction and X-ray Photoelectron Spectroscopy (XRD와 XPS를 사용한 산화아연 박막의 결함형성과 산소연관 결합사이의 상관성)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.580-585
    • /
    • 2013
  • To observe the formation of defects at the interface between an oxide semiconductor and $SiO_2$, ZnO was prepared on $SiO_2$ with various oxygen gas flow rates by RF magnetron sputtering deposition. The crystallinity of ZnO depends on the characteristic of the surface of the substrate. The crystallinity of ZnO on a Si wafer increased due to the activation of ionic interactions after an annealing process, whereas that of ZnO on $SiO_2$ changed due to the various types of defects which had formed as a result of the deposition conditions and the annealing process. To observe the chemical shift to understand of defect deformations at the interface between the ZnO and $SiO_2$, the O 1s electron spectra were convoluted into three sub-peaks by a Gaussian fitting. The O 1s electron spectra consisted of three peaks as metal oxygen (at 530.5 eV), $O^{2-}$ ions in an oxygen-deficient region (at 531.66 eV) and OH bonding (at 532.5 eV). In view of the crystallinity from the peak (103) in the XRD pattern, the metal oxygen increased with a decrease in the crystallinity. However, the low FWHM (full width at half maximum) at the (103) plane caused by the high crystallinity depended on the increment of the oxygen vacancies at 531.66 eV due to the generation of $O^{2-}$ ions in the oxygen-deficient region formed by thermal activation energy.

Prediction of Plastic Deformation Behavior of the Side Surface of Slab during Hot Rough Rolling (열간 조압연 공정에서 슬래브 측면부의 소성변형거동 예측)

  • Jeong, J.H.;Lee, K.H.;Lee, S.B.;Lee, I.K.;Lee, S.H.;Kim, H.J.;Lee, K.Y.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.7
    • /
    • pp.425-430
    • /
    • 2014
  • The aim of the current study was to predict the plastic deformation behavior of a heated slab during hot rough rolling. FE-simulations were performed to investigate the metal flow and to locate the position of surface material from the slab through the rough rolling and onto the strip, using a material point tracking technique. In addition, experimental hot rolling trials were conducted where artificial defects were impressed onto a heated slab in order to validate the FE-simulation results. The simulated results show the same tendency of deformation behavior as the experimental measurements. The movement of slab defects from the side surface towards the strip center is directly linked to the extent of lateral spread during the rolling.

Effect of Pulse Shapes on Weld Defects in Pulsed Laser Welding of Stainless Steel

  • Kim, Jong-Do;Kil, Byung-Lea;Kim, Young-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1270-1278
    • /
    • 2004
  • This paper describes the effectiveness of laser pulse shaping in eliminating weld defects such as porosity, cracks and undercuts in pulsed Nd:YAG laser welding. A large porosity was formed in a keyhole mode of deeply penetrated weld metal of any stainless steel. Solidification cracks were present in STS 310S with above 0.017%P and undercuts were formed in STS 303 with about 0.3%S. The conditions for the formation of porosity were determined in further detail in STS 316. With the objectives of obtaining a fundamental knowledge of formation and prevention of weld defects, the fusion and solidification behavior of a molten puddle was observed during laser spot welding of STS 310S through a high speed video photographing technique. It was deduced that cellular dendrite tips grew rapidly from the bottom to the surface, and consequently residual liquid remained at the grain boundaries in wide regions and enhanced the solidification cracking susceptibility. Several laser pulse shapes were investigated and optimum pulse shapes were proposed for the reduction and prevention of porosity and solidification cracking.