• 제목/요약/키워드: Metal Surface

검색결과 5,290건 처리시간 0.035초

금속 Ni 분말을 용해하여 제조된 용액에서 Ni 농도 변화가 전기도금 된 Ni 필름 특성에 미치는 영향 (Influence of Change of Ni Concentration in Baths Fabricated by Dissolving Metal Ni Powders on Properties of Electrodeposited Ni Film)

  • 윤필근;박덕용
    • 한국표면공학회지
    • /
    • 제52권2호
    • /
    • pp.78-83
    • /
    • 2019
  • Chloride baths for electrodeposited Ni thin films were fabricated by dissolving metal Ni powders with the mixed solution consisting of HCl and de-ionized water. Current efficiency, residual stress, surface morphology and microstructure of Ni films with the change of metal ion ($Ni^{2+}$) concentrations in the plating solution were studied. Current efficiency was measured to be more than 90% with increasing $Ni^{2+}$ concentrations in the plating solution. Residual stress of Ni thin film was increased from about 400 to 780 MPa with increasing $Ni^{2+}$ concentration from 0.2 to 0.5 M. It is gradually decreased to 650 MPa at 0.9 M $Ni^{2+}$ concentration. Smooth surface morphologies were observed over 0.3 M $Ni^{2+}$ concentration, but nodule surface morphology at 0.2 M. Ni films consist of FCC(111), FCC(200), FCC(220) and FCC(311) peaks in XRD patterns. Preferred orientation of FCC(111) was observed and its intensity was slightly decreased with increasing $Ni^{2+}$ concentration. The average grain size was slightly increased at 0.3 M $Ni^{2+}$ concentration and then slightly decreased with increasing $Ni^{2+}$ concentration.

콘크리트 표면처리 방법이 콘크리트 표면 금속용사 피막의 부착강도에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Concrete Surface Treatment Methods on the Bond Strength of Metal Spray Coating)

  • 박진호;김상열;이한승
    • 대한건축학회논문집:구조계
    • /
    • 제36권1호
    • /
    • pp.147-154
    • /
    • 2020
  • The exterior finishing of reinforced concrete buildings is one of the important factors to prevent durability and prevent natural environment or disaster such as temperature, snow, wind, rain from the outside as well as external design of buildings. Finishing methods can be divided into wet and dry methods. The wet method using paint is relatively easy to construct, but it requires repair and reinforcement every 1 to 5 years and requires a lot of LCC for maintenance. Finishing method using panel has good durability, but it is difficult to install and expensive. Therefore, in this paper, we evaluate the bond strength for the application of the metal spray method in order to overcome the problems of existing methods. Experimental results show that the sandblast + surface roughness agent(S-R(Y)) has a roughness of 41.16 ㎛ and the bond strength is about 3.19 MPa, which is the highest bond strength. In addition, the grinding + surface roughness agent(G-R(Y)) application showed roughness of about 36.59 ㎛ and secured the bond strength performance of 2.94 MPa.

박판용 가변성형공정의 수치적 연구 (Numerical Study on Flexible Forming Process for Sheet Metal)

  • 허성찬;서영호;박중원;구태완;송우진;김정;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.281-284
    • /
    • 2009
  • Flexible forming process for sheet metal using reconfigurable die is introduced based on numerical simulation. Numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. Elastic cushion which has high resilience behavior from excessive deformation are inserted between forming punches and blank material for smoothing the forming surface which has discrete due to characteristics of the flexile die. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation. Formability in view of surface defect such as onset of dimple is compared with regard to various punch sizes. Consequently, it is confirmed that the flexible forming process for sheet material has appropriate capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming process.

  • PDF

다결정 다이아몬드의 와이어방전가공에 관한 연구 (The Study on the WEDM of Polycrystalline Diamond)

  • 김창호;강재원;오장욱;서재봉
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.67-74
    • /
    • 2008
  • Polycrystalline diamonds(PCD) tools are widely used in machining a large variety of advanced materials. However, the manufacture of PCD tool blanks is not an economical process. The shaping of PCD blanks with conventional machining methods(such a grinding) is long, labor-intensive process. This paper reports experimental investigation of the influence of electrical machining conditions on the metal removal rate of WEDM of PCD. Experimental results show that the longer pulse-on time and the shorter pulse-off time increase the metal removal rate and worsen the surface quality. The smaller grain size of diamond yields the metal removal rate and shows the better surface quality. Higher electrical conductivity of water yields worse surface roughness.

  • PDF

AIP 코팅법에서 로의 온도가 초경합금의 TiN 코팅층 성질에 미치는 영향 (Effect of Furnace Temperature on the Property of TiN-Coated Layer on Hard Metal by Arc Ion Plating)

  • 김해지;전만수;김남경
    • 한국공작기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.49-55
    • /
    • 2006
  • The effect of coating temperature with regard to surface properties of TiN-coated layer on hard metal(WC-Co) are experimentally investigated. Hardness, surface roughness, TiN coating thickness and adsorption force were measured in order to evaluate the effect of coating temperature. The two-way ANOVA method is used in order to evaluate the experimental data. In AIP processing, It is concluded that the furnace temperature in the range of $400^{\circ}C\~500^{\circ}C$ affected to a little increasing the number of production with the coating temperature.

An Experimental Study of Valve Seat Material Galling Characteristics in Waterworks

  • Park, Sung-Jun;Kim, Young-Tae;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권1호
    • /
    • pp.46-51
    • /
    • 2007
  • Environmental contamination creates shortages of potable water. In such situations, the leakage of water due to breakage or aging of rubber valve seats is a serious problem. Rubber is apt to break when it is placed between two materials that contact each other. One way to avoid water leakage due to rubber damage and breakdown is to replace the rubber with metal, which is currently taking place in water distribution systems. In tribology, a severe form of wear is characterized by local macroscopic material transfer or removal, or by problems with sliding protrusions when two solid surfaces experience relative sliding under load. One of the major problems when metal slides is the occurrence of galling. Experimentally, various conditions influence incipient galling, such as hardness, surface roughness, temperature, load, velocity, and the external environment. This study sought to verify the galling tendencies of metal according to its hardness, surface roughness, load, and sliding velocity, and determine the quantitative effect of each factor on the galling tendencies.

강소성 유한요소법과 반응표면분석법을 이용한 박판성헝 공정에서의 비드력 및 다이형상의 설계 (Design of the Bead Force and Die Shape in Sheet Metal Forming Processes Using a Rigid-plastic Finite Element Method and Response Surface Methodology)

  • 김세호;허훈
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.284-292
    • /
    • 2000
  • Optimization of the process parameters is carried out for process design in sheet metal forming processes. The scheme incorporates with a rigid-plastic finite element method for the deformation analysis and response surface methodology for the optimum searching of process parameters. The algorithm developed is applied to design of the draw bead force and the die radius in deep drawing processes of rectangular cups. The present algorithm shows the capability of designing process parameters which enable the prevention of the weak part of fracture during processes.

  • PDF

다이아몬드 터닝머신을 이용한 알루미늄반사경의 절삭특성 (A Study of Aluminum Reflector Manufacturing in Diamond Turning Machine)

  • 김건희;고준빈;김홍배;원종호
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.1-5
    • /
    • 2002
  • A 110 m diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fsbricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an A1 substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632.8nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated A1 alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

금속 표면의 결함 검출을 위한 영역 기반 CNN 기법 비교 (Comparison of Region-based CNN Methods for Defects Detection on Metal Surface)

  • 이민기;서기성
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.865-870
    • /
    • 2018
  • A machine vision based industrial inspection includes defects detection and classification. Fast inspection is a fundamental problem for many applications of real-time vision systems. It requires little computation time and localizing defects robustly with high accuracy. Deep learning technique have been known not to be suitable for real-time applications. Recently a couple of fast region-based CNN algorithms for object detection are introduced, such as Faster R-CNN, and YOLOv2. We apply these methods for an industrial inspection problem. Three CNN based detection algorithms, VOV based CNN, Faster R-CNN, and YOLOv2, are experimented for defect detection on metal surface. The results for inspection time and various performance indices are compared and analysed.

An Isothermal Temperature Source with a Large Surface Area using the Metal-Etched Microwick-Inserted Vapor Chamber Heat Spreader

  • Go, Jeong-Sang;Kim, Kyung-Chun
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.681-688
    • /
    • 2004
  • For use of the thermal cycle of the biochemical fluid sample, the isothermal temperature source with a large surface area was designed, fabricated and its thermal characterization was experimentally evaluated. The comprehensive overview of the technology trend on the temperature control devices was detailed. The large surface area isothermal temperature source was realized by using the vapor chamber heat spreader. The cost-effectiveness and simple manufacturing process were achieved by using the metal-etched wick structure. The temperature distribution was quantitatively investigated by using IR temperature imaging system at equivalent temperatures to the PCR thermal cycle. The standard deviation was measured to be within 0.7$^{\circ}C$ for each temperature cycle. This concludes that the presented isothermal temperature source enables no temperature gradient inside bio-sample fluid. Furthermore it can be applied to the cooling of the electronic devices due to its slimness and low thermal spreading resistance.