• Title/Summary/Keyword: Metal Resource

Search Result 198, Processing Time 0.029 seconds

Present State and Prospect on Reutilization of Metal - Bearing Solid Wastes in China

  • Chai, Liyuan;Chen, Weiliang;Min, Xiaobo;He, Dewen;Zhang, Chuanfu
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.183-187
    • /
    • 2001
  • Present states on reutilization of metal-bearing solid wastes in China including metal-containing gangue, red mud, nonferrous metallurgical slag or residue, arsenical slag, steel - iron slag, waste batteries, were described in detail. The wastes pile up at a large quantity, resulting in seriously potential harm to environment. Most of these wastes, however, contain valuable metals, which are regarded as important secondary resources for extracting metals. Waste slag and batteries with a high grade of metals are treated by a hydro-based and / or pyre-based method for extracting valuable metals. While gangue and waste slag with a low grade are as a raw material in architecture field. In the future, a novel technology, such as high-grads magnetization separation technique and biological technique, will be designed to treat these wastes for protecting environment and recycling valuable components. These wastes, furthermore, are synthetically reutilized to produce various architectural materials, including glass and ceramics.

  • PDF

Hydrogen Sensing of Graphene-based Chemoresistive Gas Sensor Enabled by Surface Decoration

  • Eom, Tae Hoon;Kim, Taehoon;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.382-387
    • /
    • 2020
  • Hydrogen (H2) is considered as a new clean energy resource for replacing petroleum because it produces only H2O after the combustion process. However, owing to its explosive nature, it is extremely important to detect H2 gas in the ambient atmosphere. This has triggered the development of H2 gas sensors. 2-dimensional (2D) graphene has emerged as one of the most promising candidates for chemical sensors in various industries. In particular, graphene exhibits outstanding potential in chemoresistive gas sensors for the detection of diverse harmful gases and the control of indoor air quality. Graphene-based chemoresistive gas sensors have attracted tremendous attention owing to their promising properties such as room temperature operation, effective gas adsorption, and high flexibility and transparency. Pristine graphene exhibits good sensitivity to NO2 gas at room temperature and relatively low sensitivity to H2 gas. Thus, research to control the selectivity of graphene gas sensors and improve the sensitivity to H2 gas has been performed. Noble metal decoration and metal oxide decoration on the surface of graphene are the most favored approaches for effectively controlling the selectivity of graphene gas sensors. Herein, we introduce several strategies that enhance the sensitivity of graphene gas sensors to H2 gas.

Assessment of the Recycling of Resource Efficiency through investigating Treatment Flow of the Recyclables (재활용성 폐기물의 처리흐름 분석을 통한 자원순환성 평가)

  • Kim, Jaenam;Kim, Sujin;Phae, Chaegun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.76-88
    • /
    • 2012
  • In this study, the treatment flow of the recyclables(paper, plastic, metal, etc.) collected and separated from MSW was investigated throughout entire phase from separation and collection to final disposal. Based on the site survey, most recyclables came into six material recovery facilities were comparatively managed well. However, some of recyclables showed irrelatively transportation flow. Because the main income source of the recyclables transportation companies is profit margin between treatment and transportation cost based on economics only therefore, it occurs an unnecessary route and long distance transportation while going to final destination. This unreasonable system should be a serious problem relating establishment of the resource recycling system. As a result of this study, in order to establish the reasonably resource recycling system, recycling center including material recovery facility has to manage the recyclables generated in close range preferentially. Also integrated its treatment system over a wide area will need to be considered as a basic step for the reasonable reasonably resource recycling system.

Effect of a Metal-strap Thicknesses on the Bending Process

  • Jung, In-Suk;Kim, Jung-Whan;Lee, Weon-Hee;Chang, Jun-Pok;Bae, Hyun-Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.14-20
    • /
    • 2001
  • On the bending process, metal-strap plays an important role in dispersing the stress generated in wood. Therefore, the metal-strap has more influence on the property of bentwood materials. The effect of the metal-strap thickness for bentwood was examined. The effect of metal-strap on the bending properties of Korean red pine(Pinus densiflora Sieb. et Zucc.)was investigated in this research. The metal-strap thickness is divided into 4 kinds such as 1.0, 0.8, 0.6, 0.4 mm. The specimens were selected by grain such as annual ring angles, flat grain and half-edge grain specimens. As a result of this study, the bending ability of 1.0, 0.8 mm, thickness of half-edge grain specimens was better than flat grain specimens but the result of 0.6, 0.4 mm were reversed. The bending ability of half-edge grain was better than flat grain and the grade was higher. When the processed specimens were dried, the radius of curvature(ROC) was decreased became drying-stress was not perfectly dispersed. An optimum drying-condition would deminish this phenomenon.

  • PDF

Standardization Status of Rare Earth Elements Recycling in ISO TC 298 (ISO TC 298에서의 희토류 재활용 관련 국제 표준화 현황)

  • Lee, Mi Hye;Song, Yosep;On, Ji Sun;Yoon, Seung Hwan;Han, Munhwan;Kim, Bum Sung;Kim, Taek-soo;Lee, Bin
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.159-165
    • /
    • 2022
  • Rare earth elements, which are important components of motors, are in high demand and thus constantly get more expensive. This tendency is driven by the growth of the electric vehicle market, as well as environmental issues associated with rare-earth metal manufacturing. TC 298 of the ISO manages standardization in the areas of rare-earth recycling, measurement, and sustainability. Korea, a resource-poor country, is working on international standardization projects that focus on recycling and encouraging the domestic adoption of international standards. ITU-T has previously issued recommendations regarding the recycling of rare-earth metals from e-waste. ISO TC 298 expands on the previous recommendations and standards for promoting the recycling industry. Recycling-related rare earth standards and drafts covered by ISO TC 298, as well as Korea's strategies, are reviewed and discussed in this article.

Study on the Pollution-heaven Hypothesis Focusing on Pollution-Intensive Industries (환경규제 강화로 인한 산업재배치 효과에 관한 연구 -오염다배출산업을 중심으로-)

  • Lho, Sangwhan
    • Environmental and Resource Economics Review
    • /
    • v.11 no.1
    • /
    • pp.121-144
    • /
    • 2002
  • The purpose of this study is to test pollution-heaven hypothesis on the korean pollution-intensive industries, that is, textile and clothing, petrochemical and primary metal industry. The empirical study examines that foreign direct investment(FDI) of korean pollution-intensive industries regresses on couple of exogenous variables and the environmental regulation on FDI. As the environmental regulation is not directly observed, it uses $CO_2$ emissions as the pollutant. The results of the study show that the environmental regulation in a host country is an insignificant determinant of FDI for the korean polluting industries. That is, they do not support Leonard (1988), Xing and Kolstad (2000) that the hypothesis is a significant for heavily polluting industries.

  • PDF

Component Characteristics of Canned Oyster Processing Waste Water as a Food Resource (식품소재로서 굴통조림 가공부산액의 성분 특성)

  • 김진수;허민수;염동민
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.299-306
    • /
    • 2001
  • As a part of basic investigation for utilization of canned food processing by-products, a food components of the canned oyster processing waste water such as boiled and released water(BRW), wash water(WW) were investigated and compared with hot-water extracts from oyster. From the results of measuring heavy metal conte수, viable cells and coliform group, the canned oyster processing waste waters might not invoke health risk in using food resource. The contents of taste compounds (free amino acids, ATP related compounds, TMA (O) and total creatinine) of BRW and WW accounted for about 254% and 95%, respectively, in comparison with those of control (hot-water extract from oyster). The BRW showed a very high content of salt in comparing to the WW and control. In descending order, the values of whiteness index was WW, control and BRW. Sensory scores for color, oyster flavor intensity and saline taste were not significantly different between WW and control. But, BRW had the highest score in oyster flavor intensity, while had the lowest score in color and saline taste. But, the color and saline taste of BRW might be able to control by some pretreatment (concentration and drying in mild condition, desalination and recipe control etc). These results indicated that BRW and WW generated from various step during canned oyster processing could be a potential food resource by controlling of saline taste and color intensity.

  • PDF

폐탄광지역 퇴적물의 중금속 존재형태 및 안정화에 관한 연구

  • Lee Jeong-Ran;Lee Jae-Yeong;Kim Hwi-Jung
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.253-259
    • /
    • 2005
  • Mine is quickly decline, Nowadays, many of abandoned and closed mines. AMD is abandoned surface water by accumulated yellowboy and caused environmental pollution by amount of heavy metals. The aim of this study waste lime was mixed with the sediment to produce an aggregate far the purpose of neutralizing the acidity and stabilization the heavy metal in the aggregate structure .to pozzolan effect. The result of Waste lime and sediment mixed(5%, 10%, 20%)ration by curing days(3, 7, 38days), After 28 curing days as 5% mixed waste lime leaching solution concentration of all heavy metals is satisfied with regulation limit. Also, the result of fractionate heavy metals to stabilization as 28 curing days very decrease exchangeable and reducible type, and then increase carbonate type. With the above results, waste lime the most effective for the sediment treatment and useful for the recycling waste resource.

  • PDF

Study on separation of nonferrous metal utilizing magneto-Archimedes method

  • Ito, Yusuke;Akiyama, Yoko
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.10-14
    • /
    • 2019
  • In order to improve resource value, separation of nonferrous metals obtained from crushed materials of home appliances is required. In this study, we aimed to develop a continuous separation system by magneto-Archimedes method using magnetic fluid as a medium and the permanent magnet as a magnetic field source. Firstly, the separation conditions were examined in which only copper is settled and the difference in levitation positions between aluminum and other metals are over 1 cm. Based on the results, levitation experiment of each metal and separation experiment from the mixture of nonferrous metals were confirmed. The separation experiment showed that the continuous separation of copper and aluminum from a mixture of nonferrous metals is possible.

Characteristics of heavy metals's exposure from playground flooring (놀이터 바닥재로부터 용출되는 중금속 노출 특성)

  • Cho, Yoon A;Kim, Woo Il;Shin, Sun Kyoung;Kang, Young Yeul;Kim, Min Sun;Jeong, Seong Kyoung;Yeon, Jin Mo;Jin, Na;Lee, Ji Young
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.416-420
    • /
    • 2012
  • The increasing use of recycling products results in the need for assessing the risk to human health. In this study heavy metals's contents of playground flooring were compared with rubber powder which is row material. And it is reviewed characteristics of heavy metals's exposure from absorption of skin, checking amount of dermal uptake for each heavy metal. Despite its high content, Zn had a very low migration rate with 0.1 $mg/cm^2$. This indicates that Zn is not easily released by surface contact. However, the contents of Fe and Al in flooring were 12 times higher than that of Zn and Fe, and Al showed migration rate 5 times higher than that of Zn. This implies that Fe and Al were derived from pigment in flooring. The measurement of dermal exposure to heavy metals at 6 playgrounds found higher level of exposure in Ba than in other heavy metals. It is assumed that despite high content of Zn, Ba had a higher exposure rate because five times as much Ba as Zn was darmal absorptionactor ($AF_{darmal}$).