• Title/Summary/Keyword: Metal Resource

Search Result 201, Processing Time 0.024 seconds

A Study on Particle and Crystal Size Analysis of Lithium Lanthanum Titanate Powder Depending on Synthesis Methods (Sol-Gel & Solid-State reaction) (분말 합성법(Sol-Gel & Solid-State reaction)에 따른 Lithium Lanthanum Titanate 분말의 입자 및 결정 크기 비교 분석에 관한 연구)

  • Jeungjai Yun;Seung-Hwan Lee;So Hyun Baek;Yongbum Kwon;Yoseb Song;Bum Sung Kim;Bin Lee;Rhokyun Kwak;Da-Woon Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.324-331
    • /
    • 2023
  • Lithium (Li) is a key resource driving the rapid growth of the electric vehicle industry globally, with demand and prices continually on the rise. To address the limited reserves of major lithium sources such as rock and brine, research is underway on seawater Li extraction using electrodialysis and Li-ion selective membranes. Lithium lanthanum titanate (LLTO), an oxide solid electrolyte for all-solid-state batteries, is a promising Li-ion selective membrane. An important factor in enhancing its performance is employing the powder synthesis process. In this study, the LLTO powder is prepared using two synthesis methods: sol-gel reaction (SGR) and solid-state reaction (SSR). Additionally, the powder size and uniformity are compared, which are indices related to membrane performance. X-ray diffraction and scanning electron microscopy are employed for determining characterization, with crystallite size analysis through the full width at half maximum parameter for the powders prepared using the two synthetic methods. The findings reveal that the powder SGR-synthesized powder exhibits smaller and more uniform characteristics (0.68 times smaller crystal size) than its SSR counterpart. This discovery lays the groundwork for optimizing the powder manufacturing process of LLTO membranes, making them more suitable for various applications, including manufacturing high-performance membranes or mass production of membranes.

Evaluation of Multi-Level Memory Characteristics in Ge2Sb2Te5/TiN/W-Doped Ge2Sb2Te5 Cell Structure (Ge2Sb2Te5/TiN/W-Doped Ge2Sb2Te5 셀 구조의 다중준위 메모리 특성 평가 )

  • Jun-Hyeok Jo;Jun-Young Seo;Ju-Hee Lee;Ju-Yeong Park;Hyun-Yong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.88-93
    • /
    • 2024
  • To evaluate the possibility as a multi-level memory medium for the Ge2Sb2Te5/TiN/W-doped Ge2Sb2Te5 cell structure, the crystallization rate and stabilization characteristics according to voltage (V)- and current (I)- pulse sweeping were investigated. In the cell structures prepared by a magnetron sputtering system on a p-type Si (100) substrate, the Ge2Sb2Te5 and W-doped Ge2Sb2Te5 thin films were separated by a barrier metal, TiN, and the individual thicknesses were varied, but the total thickness was fixed at 200 nm. All cell structures exhibited relatively stable multi-level states of high-middle-low resistance (HR-MR-LR), which guarantee the reliability of the multilevel phase-change random access memory (PRAM). The amorphousto-multilevel crystallization rate was evaluated from a graph of resistance (R) vs. pulse duration (T) obtained by the nanoscaled pulse sweeping at a fixed applied voltage (12 V). For all structures, the phase-change rates of HR→MR and MR→LR were estimated to be approximately t<20 ns and t<40 ns, respectively, and the states were relatively stable. We believe that the doublestack structure of an appropriate Ge-Sb-Te film separated by barrier metal (TiN) can be optimized for high-speed and stable multilevel PRAM.

Simulation analysis and evaluation of decontamination effect of different abrasive jet process parameters on radioactively contaminated metal

  • Lin Zhong;Jian Deng;Zhe-wen Zuo;Can-yu Huang;Bo Chen;Lin Lei;Ze-yong Lei;Jie-heng Lei;Mu Zhao;Yun-fei Hua
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3940-3955
    • /
    • 2023
  • A new method of numerical simulating prediction and decontamination effect evaluation for abrasive jet decontamination to radioactively contaminated metal is proposed. Based on the Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) coupled simulation model, the motion patterns and distribution of abrasives can be predicted, and the decontamination effect can be evaluated by image processing and recognition technology. The impact of three key parameters (impact distance, inlet pressure, abrasive mass flow rate) on the decontamination effect is revealed. Moreover, here are experiments of reliability verification to decontamination effect and numerical simulation methods that has been conducted. The results show that: 60Co and other homogeneous solid solution radioactive pollutants can be removed by abrasive jet, and the average removal rate of Co exceeds 80%. It is reliable for the proposed numerical simulation and evaluation method because of the well goodness of fit between predicted value and actual values: The predicted values and actual values of the abrasive distribution diameter are Ф57 and Ф55; the total coverage rate is 26.42% and 23.50%; the average impact velocity is 81.73 m/s and 78.00 m/s. Further analysis shows that the impact distance has a significant impact on the distribution of abrasive particles on the target surface, the coverage rate of the core area increases at first, and then decreases with the increase of the impact distance of the nozzle, which reach a maximum of 14.44% at 300 mm. It is recommended to set the impact distance around 300 mm, because at this time the core area coverage of the abrasive is the largest and the impact velocity is stable at the highest speed of 81.94 m/s. The impact of the nozzle inlet pressure on the decontamination effect mainly affects the impact kinetic energy of the abrasive and has little impact on the distribution. The greater the inlet pressure, the greater the impact kinetic energy, and the stronger the decontamination ability of the abrasive. But in return, the energy consumption is higher, too. For the decontamination of radioactively contaminated metals, it is recommended to set the inlet pressure of the nozzle at around 0.6 MPa. Because most of the Co elements can be removed under this pressure. Increasing the mass and flow of abrasives appropriately can enhance the decontamination effectiveness. The total mass of abrasives per unit decontamination area is suggested to be 50 g because the core area coverage rate of the abrasive is relatively large under this condition; and the nozzle wear extent is acceptable.

Nutrient Composition and Heavy Metal Contents of Matured Livestock Liquid Fertilizer in Korea (국내 가축분뇨 부숙액비의 비료성분 및 중금속 함량 분포특성)

  • Kang, Tak-Won;Halder, Joshua Nizel;Kim, Soo-Ryang;Yoon, Young-Man;Lee, Myung-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.4
    • /
    • pp.31-39
    • /
    • 2017
  • From July to August 2013, liquid fertilizers produced at 180 liquid manure public resource centers and liquid fertilizer distribution centers were collected. The maturity of liquid fertilizers was measured using the mechanical maturity measurement device. The nutrient contents (nitrogen, phosphorus, and potassium), physicochemical properties, and heavy metal content of 46 liquid fertilizers were investigated in this study. We used a matured liquid fertilizer with a total number of 46, with number of 7 for Gyeonggi-do, 3 for Chungcheongbuk-do, 2 for Chungcheongnam-do, 13 for Jeollabuk-do, 5 for Jeollanam-do, 3 for Gyeongsangbuk-do, 11 for Gyeongsangnam-do, 1 for Daejeon, and 1 for Jeju-do. The physicochemical properties were as follows: pH 8.0, EC 11.6 mS/cm, SS 5,188 mg/L, TKN 847mg/L, ${{NH_4}^+}-N$ 317 mg/L, ${{NO_3}^-}-N$ 170 mg/L, Org-N 360 mg/L, TP 193 mg/L, and TK 2,557 mg/L. The total amount of NPK was 3,596 mg/L. The total amount of N-P-K was as follows: a number of 2 at 1,000-2,000 mg/L (4%), a number of 17 at 2,000-3,000mg/L (37%), a number of 11 at 3,000-4,000mg/L (24%), and a number of 16 at 4,000mg/L or more (35%). Thus, 41% of the mature liquid fertilizers were below the official standard of commercial fertilizer (livestock manure liquid fertilizer) (0.3% of the total amount of N-P-K). Most of the N-P-K total amount showed non-uniform characteristics of low nitrogen and low phosphoric acid due to the potassium concentration. The average heavy metal content in the matured liquid fertilizer was as follows: As, not detected; Cd, 0.01 mg/kg; Hg, not detected; Pb, 0.02 mg/kg; Cr, 0.14 mg/kg; Cu, 6.89 mg/kg; Ni, 0.44 mg/kg; and Zn, 20.70 mg/kg. Thus, the official standard of commercial fertilizer was satisfied in all categories, indicating a safe level.

A Study on the Resource Recovery of Fe-Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생되는 Fe-Clinker의 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Hirofumi Sugimoto;Akio Honjo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.50-59
    • /
    • 2023
  • The amount of dust generated during the dissolution of scrap in an electric arc furnace is approximately 1.5% of the scrap metal input, and it is primarily collected in a bag filter. Electric arc furnace dust primarily consists of zinc and ion. The processing of zinc starts with its conversion into pellet form by the addition of a carbon-based reducing agent(coke, anthracite) and limestone (C/S control). These pellets then undergo reduction, volatilization, and re-oxidation in rotary kiln or RHF reactor to recover crude zinc oxide (60%w/w). Next, iron is discharged from the electric arc furnace dust as a solid called Fe clinker (secondary by-product of the Fe-base). Several methods are then used to treat the Fe clinker, which vary depending on the country, including landfilling and recycling (e.g., subbase course material, aggregate for concrete, Fe-source for cement manufacturing). However, landfilling has several drawbacks, including environmental pollution due to leaching, high landfill costs, and wastage of iron resources. To improve Fe recovery in the clinker, we pulverized it into optimal -sized particles and employed specific gravity and magnetic force selection methods to isolate this metal. A carbon-based reducing agent and a binding material were added to the separated coarse powder (>10㎛) to prepare briquette clinker. A small amount (1-3%w/w) of the briquette clinker was charged with the scrap in an electric arc furnace to evaluate its feasibility as an additives (carbonaceous material, heat-generating material, and Fe source).

A Study on Black Leather Jacket in Youth Sub-Culture (청년하위문화에 나타난 Black Leather Jacket 연구)

  • Kim Ji-Seon;Yum Hae-Jung
    • Journal of the Korean Society of Costume
    • /
    • v.55 no.2 s.92
    • /
    • pp.92-104
    • /
    • 2005
  • This study aimed to reveal the concept and background of emergence of black leather jacket that began appearing in full-scale among youth sub-culture from 1950's, and to research its styles and aesthetic features on the basis of that. The researcher has intended to a theoretical frame to recreate black leather jacket which has been developing in youth sub-culture style as a resource of new design in modern fashion trend through this study There are 5 styles of black leather jacket in youth sub-culture after 1950's. Firstly, biker style black leather jacket showed ruined war heroes substituting for military uniform. Secondly, rocker style black leather jacket brought the conversion in definition of masculinity. Thirdly, greaser style black leather jacket showed the beauty of uncleanness expressing resistance and violence with tattered dirty materials and excessive metal ornaments. Fourthly, headbanger style black leather jacket was prominent in various and compound decoration due to combination of rocker and hippie features. fifthly, punk style black leather jacket was influenced greatly by Sex Pistols. There are broadly three ecstatic features oi black leather jacket among youth sub-culture. With regard to displaying terrorism, black leather jacket displayed threatening aspects with black color, formative beauty of inverted triangle, additional decoration, and animal & brutal feelings. Paradoxical trophyism showed Nihilism, disorder, and resistance through black color that symbolize bad luck and unstability, trophyism with bad flavor, tattered material effect, and destructive message painting. Masculine eroticism appeared in accordance with pursuing after pleasure and masculine sexuality through exposure of buttocks and focused penis due to jacket's short length, and fetish of black.

Polyunsaturated Fatty Acids, Lipid Peroxidation and Antioxidant Protection in Avian Semen - Review -

  • Surai, P.F.;Fujihara, N.;Speake, B.K.;BrilIard, J-P.;Wishart, G.J.;Sparks, N.H.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.1024-1050
    • /
    • 2001
  • Avian spermatozoa are characterised by high concentrations of polyunsaturated fatty acids (PUFAs), in particular docosatetraenoic (DTA, 22:4n-6) and arachidonic (AA, 20:4n-6) acids. As a result they are vulnerable to lipid peroxidation, which is considered to be an important factor of male infertility. Antioxidant systems are expressed in spermatozoa and seminal plasma and build three major levels of antioxidant defense. The first level is based on the activity of superoxide dismutase (SOD) which is, in conjunction with glutathione peroxidase (GSH-Px), catalase and metal-binding proteins, responsible for prevention of free radical formation. The second level of defence is responsible for prevention and restriction of chain reaction propagation and includes chain-breaking antioxidants such as vitamin E, ascorbic acid, glutathione and some others. The third level of antioxidant defence deals with damaged molecules, repairing or removing them from the cell and includes specific enzymes such as lipases, proteases, DNA repair enzymes etc. In the review, profiles of PUFAs and the two first lines of antioxidant defence in avian spermatozoa are characterised. Dietary manipulation of the breeder's diet (PUFA, vitamin E and selenium) as an effective means of modulating fatty acid composition and antioxidant system is also considered. Antioxidant properties of seminal plasma and efficiencies of inclusion of antioxidants into semen diluents are also characterised.

Molecular Characterization of a Thermophilic and Salt- and Alkaline-Tolerant Xylanase from Planococcus sp. SL4, a Strain Isolated from the Sediment of a Soda Lake

  • Huang, Xiaoyun;Lin, Juan;Ye, Xiuyun;Wang, Guozeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.662-671
    • /
    • 2015
  • To enrich the genetic resource of microbial xylanases with high activity and stability under alkaline conditions, a xylanase gene (xynSL4) was cloned from Planococcus sp. SL4, an alkaline xylanase-producing strain isolated from the sediment of soda lake Dabusu. Deduced XynSL4 consists of a putative signal peptide of 29 residues and a catalytic domain (30-380 residues) of glycosyl hydrolase family 10, and shares the highest identity of 77% with a hypothetical protein from Planomicrobium glaciei CHR43. Phylogenetic analysis indicated that deduced XynSL4 is closely related with thermophilic and alkaline xylanases from Geobacillus and Bacillus species. The gene xynSL4 was expressed heterologously in Escherichia coli and the recombinant enzyme showed some superior properties. Purified recombinant XynSL4 (rXynSL4) was highly active and stable over the neutral and alkaline pH range from 6 to 11, with maximum activity at pH 7 and more than 60% activity at pH 11. It had an apparent temperature optimum of 70℃ and retained stable at this temperature in the presence of substrate. rXynSL4 was highly halotolerant, retaining more than 55% activity with 0.25-3.0 M NaCl and was stable at the concentration of NaCl up to 4M. The enzyme activity was significantly enhanced by β-mercaptoethanol and Ca2+ but strongly inhibited by heavy-metal ions and SDS. This thermophilic and alkaline- and salt-tolerant enzyme has great potential for basic research and industrial applications.

Separation of Nickel and Tin from copper alloy dross (구리 합금 부산물에서의 주석과 니켈의 분리)

  • Lee, Jung-Il;Hong, Chang Woo;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.224-228
    • /
    • 2014
  • Recently, the demands for separation/recovery of valuable metals such as nickel or tin from copper based alloys has been attracting much attention from the viewpoints of environmental protection and resource utilization. In this report, experimental results on concentration increasement of nickel and tin compared to the previous report are investigated. Ni is successfully separated by a organic solvent and reduced to the metal powder whose concentration is over 98 %. Sn is separated by a selective solution method and its concentration is increased to 97.5 % by three consecutive solution and reduction process. Crystal structure, surface morphology and microstructure of the separated samples are studied.

Life Cycle Assessment (LCA) and Energy Efficiency Analysis of Fuel Cell Based Energy Storage System (ESS) (연료전지 기반 에너지저장 시스템의 환경 전과정평가 및 에너지 효율성 분석)

  • KIM, HYOUNGSEOK;HONG, SEOKJIN;HUR, TAK
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.2
    • /
    • pp.156-165
    • /
    • 2017
  • This study quantitatively assessed the environmental impacts of fuel cell (FC) systems by performing life cycle assessment (LCA) and analyzed their energy efficiencies based on energy return on investment (EROI) and electrical energy stored on investment (ESOI). Molten carbonate fuel cell (MCFC) system and polymer electrolyte membrane fuel cell (PEMFC) system were selected as the fuel cell systems. Five different paths to produce hydrogen ($H_2$) as fuel such as natural gas steam reforming (NGSR), centralized naptha SR (NSR(C)), NSR station (NSR(S)), liquified petroleum gas SR (LPGSR), water electrolysis (WE) were each applied to the FCs. The environmental impacts and the energy efficiencies of the FCs were compared with rechargeable batteries such as $LiFePO_4$ (LFP) and Nickel-metal hydride (Ni-MH). The LCA results show that MCFC_NSR(C) and PEMFC_NSR(C) have the lowest global warming potential (GWP) with 6.23E-02 kg $CO_2$ eq./MJ electricity and 6.84E-02 kg $CO_2$ eq./MJ electricity, respectively. For the impact category of abiotic resource depletion potential (ADP), MCFC_NGSR(S) and PEMFC_NGSR(S) show the lowest impacts of 7.42E-01 g Sb eq./MJ electricity and 7.19E-01 g Sb eq./MJ electricity, respectively. And, the energy efficiencies of the FCs are higher than those of the rechargeable batteries except for the case of hydrogen produced by WE.