Browse > Article
http://dx.doi.org/10.4014/jmb.1408.08062

Molecular Characterization of a Thermophilic and Salt- and Alkaline-Tolerant Xylanase from Planococcus sp. SL4, a Strain Isolated from the Sediment of a Soda Lake  

Huang, Xiaoyun (College of Biological Science and Technology, Fuzhou University)
Lin, Juan (College of Biological Science and Technology, Fuzhou University)
Ye, Xiuyun (College of Biological Science and Technology, Fuzhou University)
Wang, Guozeng (College of Biological Science and Technology, Fuzhou University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.5, 2015 , pp. 662-671 More about this Journal
Abstract
To enrich the genetic resource of microbial xylanases with high activity and stability under alkaline conditions, a xylanase gene (xynSL4) was cloned from Planococcus sp. SL4, an alkaline xylanase-producing strain isolated from the sediment of soda lake Dabusu. Deduced XynSL4 consists of a putative signal peptide of 29 residues and a catalytic domain (30-380 residues) of glycosyl hydrolase family 10, and shares the highest identity of 77% with a hypothetical protein from Planomicrobium glaciei CHR43. Phylogenetic analysis indicated that deduced XynSL4 is closely related with thermophilic and alkaline xylanases from Geobacillus and Bacillus species. The gene xynSL4 was expressed heterologously in Escherichia coli and the recombinant enzyme showed some superior properties. Purified recombinant XynSL4 (rXynSL4) was highly active and stable over the neutral and alkaline pH range from 6 to 11, with maximum activity at pH 7 and more than 60% activity at pH 11. It had an apparent temperature optimum of 70℃ and retained stable at this temperature in the presence of substrate. rXynSL4 was highly halotolerant, retaining more than 55% activity with 0.25-3.0 M NaCl and was stable at the concentration of NaCl up to 4M. The enzyme activity was significantly enhanced by β-mercaptoethanol and Ca2+ but strongly inhibited by heavy-metal ions and SDS. This thermophilic and alkaline- and salt-tolerant enzyme has great potential for basic research and industrial applications.
Keywords
Xylanase; Planococcus; gene cloning; thermophilic; alkaline- and salt-tolerant;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Xiong H, Nyyssölä A, Jänis J, Pastinen O, Weymarn Nv, Leisola M, Turunen O. 2004. Characterization of the xylanase produced by submerged cultivation of Thermomyces lanuginosus DSM 10635. Enzyme Microb. Technol. 35: 93-99.   DOI   ScienceOn
2 Zhang G, Mao L, Zhao Y, Xue Y, Ma Y. 2010. Characterization of a thermostable xylanase from an alkaliphilic Bacillus sp. Biotechnol. Lett. 32: 1915-1920.   DOI
3 Zhao Y, Luo H, Meng K, Shi P, Wang G, Yang P, et al. 2011. A xylanase gene directly cloned from the genomic DNA of alkaline wastewater sludge showing application potential in the paper industry. Appl. Biochem. Biotechnol. 165: 35-46.   DOI   ScienceOn
4 Zhao Y, Meng K, Luo H, Yang P, Shi P, Huang H, et al. 2011. Cloning, expression, and characterization of a new xylanase from alkalophilic Paenibacillus sp. 12-11. J. Microbiol. Biotechnol. 21: 861-868.   DOI   ScienceOn
5 Zhou J, Gao Y, Dong Y, Tang X, Li J, Xu B, et al. 2012. A novel xylanase with tolerance to ethanol, salt, protease, SDS, heat, and alkali from actinomycete Lechevalieria sp. HJ3. J. Ind. Microbiol. Biotechnol. 39: 965-975.   DOI   ScienceOn
6 Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
7 Shen J, Cao JT, Wu YH. 2001. Paleoclimatic changes in Dabusu Lake. Chin. J. Oceanol. Limnol. 19: 91-96   DOI
8 Simkhada JR, Yoo HY, Choi YH, Kim SW, Yoo JC. 2012. An extremely alkaline novel xylanase from a newly isolated Streptomyces strain cultivated in corncob medium. Appl. Biochem. Biotechnol. 168: 2017-2027.   DOI   ScienceOn
9 van den Burg B. 2003. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6: 213-218.   DOI   ScienceOn
10 Verma D, Kawarabayasi Y, Miyazaki K, Satyanarayana T. 2013. Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome. PLoS One 8: e52459.   DOI
11 Verma D, Satyanarayana T. 2012. Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresour. Technol. 107: 333-338.   DOI   ScienceOn
12 Viikari L, Kantelinen A, Sundquist J, Linko M. 1994. Xylanases in bleaching: from an idea to the industry. FEMS Microbiol. Rev. 13: 335-350.   DOI
13 Wang G, Wang Y, Yang P, Luo H, Huang H, Shi P, et al. 2010. Molecular detection and diversity of xylanase genes in alpine tundra soil. Appl. Microbiol. Biotechnol. 87: 1383-1393.   DOI
14 Manikandan K, Bhardwaj A, Gupta N, Lokanath NK, Ghosh A, Reddy VS, Ramakumar S. 2006. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: structural insights into alkalophilicity and implications for adaptation to polyextreme conditions. Protein Sci. 15: 1951-1960.   DOI   ScienceOn
15 Liu Y-G, Whittier RF. 1995. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 674-681.   DOI   ScienceOn
16 Mamo G, Delgado O, Martinez A, Mattiasson B, Hatti-Kaul R. 2006. Cloning, sequence analysis, and expression of a gene encoding an endoxylanase from Bacillus halodurans S7. Mol. Biotechnol. 33: 149-159.   DOI   ScienceOn
17 Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B. 2009. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation. Biochimie 91: 1187-1196.   DOI   ScienceOn
18 Mielenz JR. 2001. Ethanol production from biomass: technology and commercialization status. Curr. Opin. Microbiol. 4: 324-329.   DOI   ScienceOn
19 Miller GL, Blum R, Glennon WE, Burton AL. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 1: 127-132.   DOI
20 Nimchua T, Thongaram T, Uengwetwanit T, Pongpattanakitshote S, Eurwilaichitr L. 2012. Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J. Microbiol. Biotechnol. 22: 462-469.   DOI   ScienceOn
21 Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786.   DOI   ScienceOn
22 Prade RA. 1996. Xylanases: from biology to biotechnology. Biotechnol. Genet. Eng. Rev. 13: 101-131.   DOI
23 Jones BE, Grant WD, Duckworth AW, Owenson GG. 1998. Microbial diversity of soda lakes. Extremophiles 2: 191-200.   DOI
24 Hung KS, Liu SM, Fang TY, Tzou WS, Lin FP, Sun KH, Tang SJ. 2011. Characterization of a salt-tolerant xylanase from Thermoanaerobacterium saccharolyticum NTOU1. Biotechnol. Lett. 33: 1441-1447.   DOI
25 Ito S. 2011. Alkaline enzymes in current detergency, pp. 229-251. In Horikoshi K (ed.). Extremophiles Handbook. Springer, Japan.
26 Jeffries TW. 1996. Biochemistry and genetics of microbial xylanases. Curr. Opin. Biotechnol. 7: 337-342.   DOI   ScienceOn
27 Kamal Kumar B, Balakrishnan H, Rele MV. 2004. Compatibility of alkaline xylanases from an alkaliphilic Bacillus NCL (87-6-10) with commercial detergents and proteases. J. Ind. Microbiol. Biotechnol. 31: 83-87.   DOI
28 Khasin A, Alchanati I, Shoham Y. 1993. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59: 1725-1730.
29 Liu B, Zhang N, Zhao C, Lin B, Xie L, Huang Y. 2012. Characterization of a recombinant thermostable xylanase from hot spring thermophilic Geobacillus sp. TC-W7. J. Microbiol. Biotechnol. 22: 1388-1394.   DOI   ScienceOn
30 Kulkarni N, Shendye A, Rao M. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456.   DOI
31 Liu X, Huang Z, Zhang X, Shao Z, Liu Z. 2014. Cloning, expression and characterization of a novel cold-active and halophilic xylanase from Zunongwangia profunda. Extremophiles 18: 441-450.   DOI   ScienceOn
32 Collins T, Gerday C, Feller G. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.   DOI   ScienceOn
33 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
34 Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238.   DOI   ScienceOn
35 Chang P, Tsai WS, Tsai CL, Tseng MJ. 2004. Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firmus. Biochem. Biophys. Res. Commun. 319: 1017-1025.   DOI   ScienceOn
36 Ferreira-Filho EX. 1994. The xylan-degrading enzyme system. Braz. J. Med. Biol. Res. 27: 1093-1109.
37 Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K. 2003. Unique amino acid composition of proteins in halophilic bacteria. J. Mol. Biol. 327: 347-357.   DOI   ScienceOn
38 Gupta N, Reddy VS, Maiti S, Ghosh A. 2000. Cloning, expression, and sequence analysis of the gene encoding the alkali-stable, thermostable endoxylanase from alkalophilic, mesophilic Bacillus sp. strain NG-27. Appl. Environ. Microbiol. 66: 2631-2635.   DOI
39 Grant W, Sorokin D. 2011. Distribution and diversity of soda lake alkaliphiles, pp. 27-54. In Horikoshi K (ed.). Extremophiles Handbook. Springer, Japan.
40 Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ. 2009. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl. Microbiol. Biotechnol. 84: 1107-1115.   DOI
41 Bastawde KB. 1992. Xylan structure, microbial xylanases, and their mode of action. World J. Microbiol. Biotechnol. 8: 353-368.   DOI   ScienceOn
42 Anbarasan S, Janis J, Paloheimo M, Laitaoja M, Vuolanto M, Karimaki J, et al. 2010. Effect of glycosylation and additional domains on the thermostability of a family 10 xylanase produced by Thermopolyspora flexuosa. Appl. Environ. Microbiol. 76: 356-360.   DOI   ScienceOn
43 Antony CP, Kumaresan D, Hunger S, Drake HL, Murrell JC, Shouche YS. 2013. Microbiology of Lonar Lake and other soda lakes. ISME J. 7: 468-476.   DOI
44 Bai W, Xue Y, Zhou C, Ma Y. 2012. Cloning, expression and characterization of a novel salt-tolerant xylanase from Bacillus sp. SN5. Biotechnol. Lett. 34: 2093-2099.   DOI   ScienceOn
45 Beg QK, Kapoor M, Mahajan L, Hoondal GS. 2001. Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56: 326-338.   DOI
46 Biely P, Vrsanska M, Tenkanen M, Kluepfel D. 1997. Endo-β-1,4-xylanase families: differences in catalytic properties. J. Biotechnol. 57: 151-166.   DOI   ScienceOn
47 Saha BC. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279-291.   DOI