• 제목/요약/키워드: Metal Removal

검색결과 1,218건 처리시간 0.024초

금속산화물을 이용한 이산화황과 산화질소의 동시재거( II ) -금속산화물과 이산화황의 반응- (Simultaneous Removal of SO$_2$ and NO by Using Metal Oxide( II ) -Oxidative Sorption of SO$_2$ by Metal Oxide-)

  • 신창섭
    • 한국안전학회지
    • /
    • 제6권4호
    • /
    • pp.26-33
    • /
    • 1991
  • To remove SO$_2$ from flus gas, cupric oxide, manganese oxide and iron oxide were studied with varying loading value. The experiment was carried out in a flow reactor and the reactants were prepared by impregnation method using alumina. The reaction temperature was varied from 30$0^{\circ}C$ to 45$0^{\circ}C$. Experimental results showed that all of these metal oxides were effective on SO$_2$ removal reaction and cupric oxide was the best reactant. The sample with 10wt% loading value was better reactant than with 20wt% because in case of 20wt% loading, metal dispersion on the alumina surface was not uniform. And the SO$_2$ removal efficiency was increased with the reaction temperature.

  • PDF

초경합금의 와이어방전가공 가공성 및 표면특성 (Machinability and Surface Characteristics of Sintered Carbides in W-EDM)

  • 김창호
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.100-105
    • /
    • 1999
  • This work analyses the effects of electrical conductivities of dielectric and cobalt amount on output parameters such as metal removal rate and the surface roughness value of cemented carbides cut by wire electrical discharge machining(W-EDM). Especially, the cracking behaviour of W-EDM machined surface and optimal machining condition of three kinds of cemented carbides, which have different chemical composition of tungsten carbide and cobalt are also tested. Experimental result shows that increases in cobalt content and electrical conductivity of the dielectric affect the metal removal rate and substantially worsen the final surface quality as a greater quantity of solidified metal deposits on the eroded surface.

  • PDF

소성처리에 의한 황토의 물성특성 변화 및 용존 중금속 제거능력 (Changes in Physical Properties and Its Metal Removal Efficiency for The Yellow Soils by Calcination Process)

  • 이진원;김석휘;황갑수
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.584-591
    • /
    • 2017
  • 수중에서 중금속은 흡착제에 의한 표면흡착과 금속수산화물로의 침전/제거반응이 동시에 일어나기 때문에 이들 각각에 의한 중금속 제거기작은 명확하게 구분되어 설명되지 못한다. 본 연구에서는 중금속 제거기작을 보다 명확하게 이해하기 위해 $850^{\circ}C$로 소성된 황토를 이용하여 다양한 pH 조건에서 Cu, Pb, Zn, Cd, 그리고 Cr 수용액 각각을 대상으로 회분식실험을 수행하였다. 실험결과 Cr을 제외한 중금속 농도는 반응초기에(<5분) 급격하게 감소되어 초기농도 대비 약 90%가 제거되었다. 한편, pH는 대상 금속 수용액에 따라 정도의 차이를 보이긴 하나 전체적으로 반응시간에 따라 지속적으로 증가되어 7.0-9.0까지 증가되었다. 반응시간에 따라 증가되는 pH 값과 높은 pH 조건에서 상대적으로 높은 중금속 제거율은 금속수산화물의 침전과 관련 있어 보인다. 흡착제(상용활성탄, 비소성황토, 소성황토)별 반응시간에 따른 pH 변화에 대한 비교실험결과, pH 증가현상은 소성황토에서만 두드러지게 나타나 소성과정에서 황토의 물성특성이 변화되었던 것으로 생각된다. 따라서 소성황토에 의한 중금속 제거는 흡착제에 의한 단순흡착뿐 아니라, 높은 pH 조건에서 금속수산화물을 형성함으로써 흡착질 표면에 침전 제어 될 수 있음을 보여준다.

Removal of Cu(II) ions by Alginate/Carbon Nanotube/Maghemite Composite Magnetic Beads

  • Jeon, Son-Yeo;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • 제11권2호
    • /
    • pp.117-121
    • /
    • 2010
  • The composites of alginate, carbon nanotube, and iron(III) oxide were prepared for the removal of heavy metal in aqueous pollutant. Both alginate and carbon nanotube were used as an adsorbent material and iron oxide was introduced for the easy recovery after removal of heavy metal to eliminate the secondary pollution. The morphology of composites was investigated by FE-SEM showing the carbon nanotubes coated with alginate and the iron oxide dispersed in the alginate matrix. The ferromagnetic properties of composites were shown by including iron(III) oxide additive. The copper ion removal was investigated with ICP AES. The copper ion removal efficiency increased greatly over 60% by using alginate-carbon nanotube composites.

Continuous removal of heavy metals by coupling a microbial fuel cell and a microbial electrolytic cell

  • Xie, Guo R.;Choi, Chan S.;Lim, Bong S.;Chu, Shao X.
    • Membrane and Water Treatment
    • /
    • 제11권4호
    • /
    • pp.283-294
    • /
    • 2020
  • This work aims at studying the feasibility of continuous removal of mixed heavy metal ions from simulated zinc plating wastewaters by coupling a microbial fuel cell and a microbial electrolysis cell in batch and continuous modes. The discharging voltage of MFC increased initially from 0.4621 ± 0.0005 V to 0.4864 ± 0.0006 V as the initial concentration of Cr6+ increased from 10 ppm to 60 ppm. Almost complete removal of Cr6+ and low removal of Cu2+ occurred in MFC of the MFC-MEC-coupled system after 8 hours under the batch mode; removal efficiencies (REs) of Cr6+ and Cu2+ were 99.76% and 30.49%. After the same reaction time, REs of nickel and zinc ions were 55.15% and 76.21% in its MEC. Cu2+, Ni2+, and Zn2+ removal efficiencies of 54.98%, 30.63%, 55.04%, and 75.35% were achieved in the effluent within optimum HRT of 2 hours under the continuous mode. The incomplete removal of Cu2+, Ni2+ and Zn2+ ions in the effluent was due to the fact that the Cr6+ was almost completely consumed at the end of MFC reaction. After HRT of 12 hours, at the different sampling locations, Cr6+ and Cu2+ removal efficiencies in the cathodic chamber of MFC were 89.95% and 34.69%, respectively. 94.58%, 33.95%, 56.57%, and 75.76% were achieved for Cr6+, Cu2+, Ni2+ and Zn2+ in the cathodic chamber of MEC. It can be concluded that those metal ions can be removed completely by repeatedly passing high concentration of Cr6+ through the cathode chamber of MFC of the MFC-MEC-coupled system.

Electrodialysis of metal plating wastewater with neutralization pretreatment: Separation efficiency and organic removal

  • Park, Yong-Min;Choi, Su-Young;Park, Ki-Young;Kweon, Jihyang
    • Membrane and Water Treatment
    • /
    • 제11권3호
    • /
    • pp.179-187
    • /
    • 2020
  • Electrodialysis has been applied for treatment of industrial wastewater including metal electroplating. The wastewater from metal plating industries contains high concentrations of inorganics such as copper, nickel, and sodium. The ions in the feed were separated due to the electrical forces in the electrodialysis. The concentrate compartment is exposed to the elevated concentrations of the ions and yielded inorganic precipitations on the cation exchange membranes. The presence of organic matter in the metal plating wastewater affects complex interfacial reactions, which determines characteristics of inorganic scale fouling. The wastewater from a metal plating industry in practice was collected and the inorganic and organic compositions of the wastewater were analyzed. The performance of electrodialysis of the raw wastewater was evaluated and the effects of adjusting pH of the raw water were also measured. The integrated processes with neutralization and electrodialysis showed great removal of heavy metals sufficient to discharge to aquatic ecosystem. The organic matter in the raw water was also reduced by the neutralization, which might enhance removal performance and alleviate organic fouling in the integrated system.

제주 송이(Scoria)를 이용한 중금속 흡착에 관한 연구 (Study on Adsorption of Heavy Metal tons by Cheju Scoria)

  • 이민규;서근학
    • 한국환경과학회지
    • /
    • 제5권2호
    • /
    • pp.195-201
    • /
    • 1996
  • This study was conducted for the efficient utilization of a scoria, which is abundantly found in Cheju island, as adsorbent and the scoria was examined for its performance in clarification of adsorption of heavy metal ions. The order in heavy metal ions adsorbed on scoria was; Pb+>Cd^{2+}$>Cu^{2+}$>Ag^+$>Co^{2+}$>Zn^{2+}$>Cr^{3+}$>Cr^{6+}$. This tendency was relatively consistent with the decreasing order of radius of hydrated metal ion. Also, the smaller scoria size and the larger amounts of scoria showed higher removal efficiency for heavy metal ions. The same scoria size showed more effective removal efficiency for heavy metal ions at lower initial concentration than at higher initial concentration. The adsorption abilities of original scoria and chemically treated scoria were compared. Adsorption isotherm of scoria was generally obeyed to Freundlich formula than langmuir formula and Freundlich constant, than was obtained in the range of 0.2~0.4.

  • PDF

Isothermal and Kinetic Studies of the Adsorption Removal of Pb(II), Cu(II), and Ni(II) Ions from Aqueous Solutions using Modified Chara Sp. Algae

  • Kalash, Khairi R.;Alalwan, Hayder A.;Al-Furaiji, Mustafa H.;Alminshid, Alaa. H.;Waisi, Basma I.
    • Korean Chemical Engineering Research
    • /
    • 제58권2호
    • /
    • pp.301-306
    • /
    • 2020
  • We investigated the individual biosorption removal of lead, copper, and nickel ions from aqueous solutions using Chara sp. algae powder in a batch mode. The impact of several parameters, such as initial concentration of the metal ions, contacting time, sorbent dose, and pH on the removal efficiency, was investigated. The maximum removal efficiency at optimum conditions was found to be 98% for Pb(II) at pH = 4, 90% for Cu(II) at pH = 5, and 80% for Ni(II) at pH = 5. The isotherm study was done under the optimum conditions for each metal by applying the experimental results onto the well-known Freundlich and Langmuir models. The results show that the Langmuir is better in describing the isotherm adsorption of Pb(II) and Ni(II), while the Freundlich is a better fit in the case of Cu(II). Similarly, a kinetic study was performed by using the pseudo-first and second-order equations. Our results show that the pseudo-second-order is better in representing the kinetic adsorption of the three metal ions.

Recent Advances in the Removal of Radioactive Wastes Containing 58Co and 90Sr from Aqueous Solutions Using Adsorption Technology

  • Alagumalai, Krishnapandi;Ha, Jeong Hyub;Choi, Suk Soon
    • 공업화학
    • /
    • 제33권4호
    • /
    • pp.352-366
    • /
    • 2022
  • Nuclear power plant operations for electricity generation, rare-earth mining, nuclear medical research, and nuclear weapons reprocessing considerably increase radioactive waste, necessitating massive efforts to eradicate radioactive waste from aquatic environments. Cobalt (58Co) and strontium (90Sr) radioactive elements have been extensively employed in energy generation, nuclear weapon testing, and the manufacture of healthcare products. The erroneous discharge of these elements as pollutants into the aquatic system, radiation emissions, and long-term disposal is extremely detrimental to humans and aquatic biota. Numerous methods for treating radioactive waste-contaminated water have emerged, among which the adsorption process has been promoted for its efficacy in eliminating radioactive waste from aquatic habitats. The current review discusses the adsorptive removal of radioactive waste from aqueous solutions using low-cost adsorbents, such as graphene oxide, metal-organic frameworks, and inorganic metal oxides, as well as their composites. The chemical modification of adsorbents to increase their removal efficiency is also discussed. Finally, the current state of 58Co and 90Sr removal performances is summarized and the efficiencies of various adsorbents are compared.

Preparation and Application of ACFs Derived from the Petroleum Pitch and the Organometallic Compounds

  • Hong, Ik-Pyo;Ha, Baik-Hyon
    • Carbon letters
    • /
    • 제3권3호
    • /
    • pp.146-151
    • /
    • 2002
  • Activated carbon fibers were prepared from the petroleum isotropic pitch and organometallic compounds. The metalsvwere dispersed uniformly in the ACFs. The specific surface area and pore size distributions of metal containing ACFsvwere measured. The mesopores of ACFs were developed by Co, Ni, and Mn metals addition and the catalytic reactivityvof ACFs'SOx removal was increased by adding Ni and Pd metals. It was found that the mesopores did not work forvthe improvement of catalytic reactivity of ACFs' SOx removal with the blank experiment using the metal removedvACFs.

  • PDF