• Title/Summary/Keyword: Metal Panel

Search Result 304, Processing Time 0.033 seconds

Metallizations and Electrical Characterizations of Low Resistivity Electrodes(Al, Ta, Cr) in the Amorphous Silicon Thin Film Transistor (비정질 실리콘 박막 트랜지스터 소자 특성 향상을 위한 저 저항 금속 박막 전극의 형성 및 전기적 저항 특성 평가)

  • Kim, Hyung-Taek
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.96-99
    • /
    • 1993
  • Electrical properties of the Thin Film Transistor(TFT) electrode metal films were investigated through the Test Elements Group(TEG) experiment. The main purpose of this investigation was to characterize the electrical resistance properties of patterned metal films with respect to the variations of film thickness and TEG metal line width. Aluminum(Al), Tantalum(Ta) and Chromium(Cr) that are currently used as TFT electrode films were selected as the probed metal films. To date, no work in the electrical characterizations of patterned electrodes of a-Si TFT was accomplished. Bulk resistance$(R_b)$, sheet resistance$(R_s)$, and resistivities($\rho$) of TEG patterned metal lines were obtained. Electrical continuity test of metal film lines was also performed in order to investigate the stability of metallization process. Almost uniform-linear variations of the electrical properties with respect to the metal line displacements was also observed.

  • PDF

Finite Element Simulation of Behavior of WBK Cored Sandwich Panels Subjected to Bending Loads (굽힘하중 하의 벌크형 와이어 직조 카고메 트러스 중간재를 갖는 샌드위치 판재의 기계적 거동)

  • Choi, Ji-Eun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.353-359
    • /
    • 2009
  • Wire-woven Bulk Kagome (WBK) is a new truss type cellular metal fabricated by systematic assembling of helical wires in six directions. In this work, the experiments of mechanical behaviors of WBK cored sandwich panels subjected to bending load were performed and the results were compared with those by the corresponding analytic solutions. And also, finite element simulations were performed to validate the optimal design according to the analytic solutions. It is found the sandwich panel with WBK core performed excellently in terms of energy absorption and deformation stability after the peak point as well as the load capacity.

A Study on Low-Velocity Impact Characterization of Sandwich Panels with Metal and Laminate Composite Facesheets (금속재와 적층복합재 면재를 갖는 샌드위치 패널의 저속충격 특성 연구)

  • Lee, Jae-Youl;Lee, Sang-Jin;Jo, Se-Hyun;Mok, Jai-Kyun;Shin, Kwang-Bok
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.144-150
    • /
    • 2007
  • In this paper, the low velocity response of four different sandwich panels with metal and laminate composite facesheets has been investigated by conducting drop-weight impact tests using an instrumented falling-weight impact tower. Square samples of 100mm sides were subjected low-velocity impact loading using an instrumented testing machine at six energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for four different types of sandwich panels. The impact test results show that sandwich panel with composite laminate facesheet could not observe damage mode of a permanent visible indentation after impact and has a good impact damage resistance in comparison with sandwich panel with metal aluminum facesheet.

  • PDF

Analysis of Forming a Front Door Panel Including Trimming and Flanging (트리밍과 플랜징을 포함한 Front Door Panel 의 성형해석)

  • 김충식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.53.1-56
    • /
    • 1999
  • Using a new dynamic-explicity program SAIT_STAMP the analysis of forming a front door panel is presented. The analysis consists of 7 processes including drawing trimming flanging and springback. From the analysis results it is shown that adaptive refinement scheme and robust trimming algorithm enable SAIT_STAMP to simulate the multi-stage forming of automotive parts with large and complex geometry.

  • PDF

A Study of Tool Planning for Forming Analysis in REF SILL OTR-R/L Auto-Body Panel Stamping Process (REF SILL OTR-R/L 차체판넬 스템핑 공정에서 성형해석을 통한 공법개발에 관한 연구)

  • Ko H.H.;Ahn H.G.;Lee C.H.;Ahn B.I.;Moon W.S.;Jung D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1980-1983
    • /
    • 2005
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. Among Finite element method, The static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of ide. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF

A Study of Tool Planning for Forming Analysis in REF SILL OTR-R/L Auto-Body Panel Stamping Process (REF SILL OTR-R/L 차체판넬 스템핑 공정에서 성형해석을 통한 공법개발에 관한 연구)

  • Ko Hyung-Hoon;Ahn Hyun-Gil;Lee Chan-H;Ahn Byung-Il;Moon Won-Sub;Jung Dong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.118-124
    • /
    • 2006
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excel lent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behavior. Among Finite element method, the static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focused on the drawing ability factors on auto-body panel stamping by AUTOFORM with using tool planning alloy to reduce law price as well as high precision front Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

Field Try-out of Tailored Door Inner Panel (테일러드 도어인너 패널의 현장 트라이아웃)

  • 이종문;김상주;금영탁
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.193-199
    • /
    • 2001
  • Forming more than two parts of sheet metal in a single stamping operation lowers production costs, reduces weight, and heightens dimensional accuracy. The tailored blank (TB) is a laser-welded or mash-seam-welded sheet metal with different thicknesses, different strengths, or different coatings. Recently, automotive manufacturers have been interested in tailored blanks because of their desire to improve the rigidity, weight reduction, crash durability, and cost savings. Therefore the application to auto-bodies has increased. However, as tailored blanks do not behave like un-welded blanks in press forming operations, stamping engineers no longer rely on conventional forming techniques. Field try-outs are very important manufacturing processes for an economic die-making. In the field try-outs, the rounded geometries of tool and the drawbead shape and size in die face are generally modified when the forming defects can not be removed by the adjustment of forming process parameters. In this study, the field try-outs of tailored door inner panel are introduced and evaluated. The behaviours of laser tailored blank associated with different thickness combinations in the forming process of door inner panel are described focusing on terms of experimental investigations on the formability.

  • PDF

Deformational characteristics of a high-vacuum insulation panel

  • Shu, Hung-Shan;Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.10 no.3
    • /
    • pp.245-262
    • /
    • 2000
  • The objective of this study is to analyze the deformational characteristics of a high-vacuum insulation panel that is evacuated to eliminate significant gas-phase conductance through its thickness. The panel is composed of a metal envelope and low thermal conductance spacers. The problem is very challenging because several nonlinearities are involved concurrently. Not only are various finite element models such as triangular, rectangular, beam and circular plate models used to simulate the panel, but also several finite element programs are used to solve the problem based on the characteristics of the finite element model. The numerical results indicate that the effect of the diameter of the spacer on the vertical deformation of the plate panel is negligibly small. The parameter that mainly influences the maximum sag is the spacing between the spacers. The maximum vertical deformation of the panel can be predicted for a practical range of the spacing between the spacers and the thickness of the plate. Compared with the numerical results obtained by the finite element models and the experimental tests, they have a good agreement. The results are represented in both tabular and graphical forms. In order to make the results useful, a curve fitting technique has been applied to predict the maximum deformation of the panel with various parameters. Moreover, the panel was suggested to be a "smart" structure based on thermal effect.

Mechanical Behavior of New Thin Sandwich Panel Subjected to Bending (새로운 박판샌드위치 판재의 삼점굽힘거동)

  • Lee, Jung-In;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.529-535
    • /
    • 2013
  • A new thin sandwich panel composed of an aluminum expanded metal core adhesively jointed with stainless steel face sheets is introduced, and its mechanical behavior under three-point bending is investigated. The strength and stiffness are analyzed theoretically, and the press-formability and strength enhancement are evaluated experimentally. The specimens with the specific configurations exhibit face yielding well before face-core separation, which means that the sandwich panel can be formed by a press without failure. The measured load levels corresponding to the face yielding and the face-core separation agree fairly well with the theoretical estimations. For a given weight, the sandwich panel is superior to a solid panel in terms of strength, stiffness, and press-formability.