• Title/Summary/Keyword: Metal Organic Framework

Search Result 102, Processing Time 0.036 seconds

Recent research trend of supercapacitor and chemical sensor using composite of ZIF-8 and carbon-based material (ZIF-8과 탄소기반물질 복합체를 이용한 슈퍼커패시터 및 화학센서의 최신연구동향)

  • Kim, Sang Jun;Lee, Jae Min;Jo, Seung Geun;Lee, Eun Been;Lee, Seoung-Ki;Lee, Jung Woo
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.2
    • /
    • pp.51-62
    • /
    • 2022
  • Metal-organic framework (MOF) is one of the representative porous materials composed of metal ions and organic linkers. In spite of many advantages of the MOFs such as high specific surface area and ease of structure control, drawbacks have become obstacles to the practical use of them with poor electrical conductivity and chemical stability. The ZIF-8, which is consisted of zinc and imidazole linker, is one of the solutions to improve the chemical stability issue. In addition, composites using the ZIF-8 and carbonbased materials are widely used to enhance the electrical conductivity. In this regard, supercapacitor is very attractive field for using the composites, because most of carbon-based materials are porous and conductive. Also, for sensor applications, the ZIF-8 composite is suitable material to meet the requirement in terms of the selectivity and sensitivity. This review summarizes recent progress of the composite materials with the ZIF-8 and the carbon-based materials for the supercapacitors and the chemical sensors. In particular, the composites are classified into ZIF-8-graphene, ZIF-8-carbon nanotube and ZIF-8-other carbon-based material.

Guest Changes Host: Adsorption Site and Binding Nature of Hydrogen in MOF-5

  • Ju, Jae-Yong;Kim, Hyeong-Jun;Han, Sang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.160.1-160.1
    • /
    • 2014
  • Using a density functional theory calculation including van der Waals (vdW) corrections, we report that $H_2$ adsorption in a cubic-crystalline microporous metal-organic framework (MOF-5) leads to volume shrinkage, which is in contrast to the intuition that gas adsorption in a confined system (e.g., pores in a material) increases the internal pressure and then leads to volumetric expansion. This extraordinary phenomenon is closely related to the vdW interactions between MOF and $H_2$ along with the $H_2$-$H_2$ interaction, rather than the Madelung-type electrostatic interaction. At low temperatures, $H_2$ molecules adsorbed in the MOF-5 form highly symmetrical interlinked nanocages that change from a cube-like shape to a sphere-like shape with $H_2$ loading, helping to exert centrosymmetric forces and hydrostatic (volumetric) stresses from the collection of dispersive interactions. The generated internal negative stress is sufficient to overcome the stiffness of the MOF-5 which is a soft material with a low bulk modulus (15.54 GPa).

  • PDF

다중 금속 착화합물의 이론적 계산

  • Kim, Chang-Gyu;Son, Mun-Gi;Sin, Seok-Min
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.197-209
    • /
    • 2014
  • 환경 오염에 대한 우려의 목소리가 높아지면서 Green chemistry 분야가 각광을 받고 있다. 이 분야에서는 환경에 영향을 적게 미치기 위한 방법의 일환으로 촉매를 연구하며, 그 촉매는 착화합물인 경우가 많다. 그러나 착화합물 내에서 리간드와 금속 이온간의 결합은 예측하기 어렵다. 이는 전형금속보다는 전이금속에서 더욱 심하며, 그 중 한 예로 전이금속에서는 여러 개의 금속 이온이 서로 직접적으로 결합한 채 리간드와 결합하는 착화합물이 발견되기도 한다. 다중 금속 착화합물(Multimetal Complex)로 부르는 이러한 구조는 특유의 복잡함 때문에 잘 알려져 있지 않음에도 불구하고 착화합물의 물리적, 화학적 성질에 직접적으로 영향을 주기에 촉매나 센서, 특히 이를 이용하여 구조체를 만드는 MOF(Metal-Organic Framework) 분야에서는 꼭 알고 있어야 하는 사항이다. 이 연구에서는 GAMESS로 density functional theory (B3LYP functional)를 이용한 양자계산을 수행하여 그 중 가장 간단한 구조인 Dimetal Complex, 그 중에서도 MOF 내에서 많이 발견되는 수차 형태(Paddle wheel) 착화합물에 대해서 다루었다. Cu를 기준으로 그와 비슷한 주기나 족에 있는 Ru, Ag, Zn 등의 금속으로 만든 Paddle wheel 구조의 에너지를 비교하여 Cu가 다른 금속에 비해 이 구조를 안정하게 형성할 수 있는 이유를 알아보았다. 더 나아가 이 구조가 MOF의 형성과 성질에 어떠한 연관성이 있는지 분석함으로써 어떠한 조건이 MOF의 성질을 극대화시킬 수 있는지도 알아보았다.

  • PDF

Optimization of synthesis conditions and $CO_2$ capture capability of Cu-BTC Metal-Organic Framework (이산화탄소 흡착용 Cu-BTC MOF 합성 최적화)

  • Peng, Mei Mei;Hemalatha, Pushparaj;Ganesh, Mani;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.200-203
    • /
    • 2011
  • A copper-based metal organic framework (MOF) named Cu-BTC, also known as HKUST-1, was synthesized by using a solvothermal method at various synthesis temperature, time and pressure. The obtained samples were characterized with Powder X-ray diffraction (XRD) for phase structure, scanning electron microscopy (SEM) for crystal structure, and nitrogen adsorption-desorption for pore textural structure. The Cu-BTC sample was also studied for $CO_2$ adsorption. The analysis results displayed that the sample synthesized at the condition of temperature: $120^{\circ}C$, synthesis time: 12 hours, pressure: 1 bar exhibited a good crystal structure with uniform size of octahedral particles. The BET data revealed a high surface area of 1741.7 $m^2g^{-1}$ and a pore volume of 0.7137 $cm^3g^{-1}$and exhibiteda maximum $CO_2$ adsorption capacity of 170 mg/g of the sorbent at $25^{\circ}C$.

  • PDF

Ni Nanoparticles Supported on MIL-101 as a Potential Catalyst for Urea Oxidation in Direct Urea Fuel Cells

  • Tran, Ngan Thao Quynh;Gil, Hyo Sun;Das, Gautam;Kim, Bo Hyun;Yoon, Hyon Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.387-391
    • /
    • 2019
  • A highly porous Ni@MIL-101catalyst for urea oxidation was synthesized by anchoring Ni into a Cr-based metal-organic framework, MIL-101, particles. The morphology, structure, and composition of as synthesized Ni@MIL-101 catalysts were characterized by X-Ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electro-catalytic activity of the Ni@MIL-101catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the structure of Ni@MIL-101 retained that of the parent MIL-101, featuring a high BET surface area of $916m^2g^{-1}$, and thus excellent electro-catalytic activity for urea oxidation. A $urea/H_2O_2$ fuel cell with Ni@MIL-101 as anode material exhibited an excellent performance with maximum power density of $8.7mWcm^{-2}$ with an open circuit voltage of 0.7 V. Thus, this work shows that the highly porous three-dimensional Ni@MIL-101 catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.

Facile and Clean Synthetic Route to Non-Layered Two-Dimensional ZIF-67 Nanosheets

  • Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.257-262
    • /
    • 2020
  • Two-dimensional (2D) metal organic framework (MOF) nanosheets (NSs) have recently gained considerable interest owing to their structural advantages, such as large surface area and exposed active sites. Two different types of 2D MOF NSs have been reported, including inherently layered MOFs and non-layered ones. Although several studies on inherently layered 2D MOFs have been reported, non-layered 2D MOFs have been rarely studied. This may be because the non-layered MOFs have a strong preference to form three-dimensionality intrinsically. Furthermore, the non-layered MOFs are typically synthesized in the presence of the surfactant or modulator, and thus developing facile and clean synthetic routes is highly pursued. In this study, a facile and clean synthetic methodology to grow non-layered 2D cobalt-based zeolitic imidazolate framework (ZIF-67) NSs is suggested, without using any surfactant and modulator at room temperature. This is achieved by directly converting ultrathin α-Co(OH)2 layered hydroxide salt (LHS) NSs into non-layered 2D ZIF-67 NSs. The comprehensive characterizations were conducted to elucidate the conversion mechanism, structural information, thermal stability, and chemical composition of the non-layered 2D ZIF-67. This facile and clean approach could produce a variety of non-layered 2D MOF NS families to extend potential applications of MOF materials.

Recent Progress on Metal-Organic Framework Membranes for Gas Separations: Conventional Synthesis vs. Microwave-Assisted Synthesis (기체분리용 금속유기구조체 분리막의 최근 연구 동향 및 성과)

  • Ramu, Gokulakrishnan;Jeong, Hae-Kwon
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.1-42
    • /
    • 2017
  • Metal-organic frameworks (MOFs) are nanoporous materials that consist of organic and inorganic moieties, with well-defined crystalline lattices and pore structures. With a judicious choice of organic linkers present in the MOFs with different sizes and chemical groups, MOFs exhibit a wide variety of pore sizes and chemical/physical properties. This makes MOFs extremely attractive as novel membrane materials for gas separation applications. However, the synthesis of high-quality MOF thin films and membranes is quite challenging due to difficulties in controlling the heterogeneous nucleation/growth and achieving strong attachment of films on porous supports. Microwave-based synthesis technology has made tremendous progress in the last two decades and has been utilized to overcome some of these challenges associated with MOF membrane fabrication. The advantages of microwaves as opposed to conventional synthesis techniques for MOFs include shorter synthesis times, ability to achieve unique and complex structures and crystal size reductions. Here, we review the recent progress on the synthesis of MOF thin films and membranes with an emphasis on how microwaves have been utilized in the synthesis, improved properties achieved and gas separation performance of these films and membranes.

Acid-Base Bifunctional Metal-Organic Frameworks: Green Synthesis and Application in One-Pot Glucose to 5-HMF Conversion

  • Zhang, Yunlei;Jin, Pei;Meng, Minjia;Gao, Lin;Liu, Meng;Yan, Yongsheng
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850132.1-1850132.14
    • /
    • 2018
  • The direct synthesis of metal-organic frameworks (MOFs) with acidic and basic active sites is challenging due to the introduction of functional groups by post-functionalization method often jeopardize the framework integrity. Herein, we report the direct synthesis of acid-base bifunctional MOFs with tuning acid-base strength. Employing modulated hydrothermal (MHT) approach, microporous MOFs named $UiO-66-NH_2$ was prepared. Through the ring-opening reaction of 1,3-propanesultone with amino group, $UiO-66-NH_2-SO_3H-type$ catalysts can be obtained. The synthesized catalysts were well characterized and their catalytic performances were evaluated in one-pot glucose to 5-HMF conversion. Results revealed the acid-base bi-functional catalyst possessed high activity and excellent stability. This work provides a general and economically viable approach for the large-scale synthesis of acid-base bi-functional MOFs for their potential use in catalysis field.

Effect of Thermal Treatment Temperature on Electrochemical Behaviors of Ni/trimesic Acid-based Metal Organic Frameworks Electrodes for Supercapacitors (수퍼커패시터용 니켈/트리메식 산 기반 금속-유기구조체 전극의 전기화학적 거동에 열처리 온도가 미치는 효과)

  • Kim, Jeonghyun;Jung, Yongju;Kim, Seok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.11-16
    • /
    • 2019
  • Ni-benzene-1,3,5-tricarboxylic acid based metal organic frameworks were successfully synthesized by hydrothermal method and thermally treated at various temperature. The electrochemical performance of composites was investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. Among all prepared composites, the samples annealed at $250^{\circ}C$ showed the highest capacitance with a low resistance, and high cycle stability. It was possible to obtain the low electrical resistance and high electric conductivity of the electrode by improved microstructure and morphology after the thermal annealing at $250^{\circ}C$. The samples annealed at $250^{\circ}C$ also displayed the maximum specific capacitance with a value of $953Fg^{-1}$ at a current density of $0.66A/g^{-1}$ in 6 M KOH electrolyte. Moreover, a 86.4% of the initial specific capacitance of the composite was maintained after 3,000 times charge-discharge cycle tests. Based on these properties, it can be concluded that the composite could be applied as potential supercapacitor electrode materials.

Studies on Adsorption and Desorption of Ammonia Using Covalent Organic Framework COF-10 (Covalent Organic Framework (COF-10)를 이용한 암모니아 흡착 및 탈착에 관한 연구)

  • Yang, Heena;Kim, Iktae;Ko, Youngdon;Kim, Shindong;Kim, Whajung
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.265-269
    • /
    • 2016
  • Ammonia gas as a hydrogen source has received great attention since the importance of hydrogen gas as a clean energy source increased. However, ammonia is toxic and corrosive to metal such that the absorbent that can store and transport ammonia became an important issue. As an effort to solve this, a large pored covalent organic framework, COF-10 was proposed as an adsorbent for storage and safe transportation of ammonia. During the ammonia adsorption process, boron in COF-10 structure can act as a Lewis acid site and bind with ammonia. In this study, COF was synthesized and its structure was identified by BET, XRD and FT-IR. The adsorption characteristics of COF were investigated by TPD and adsorption isotherm. The COF-10 showed an excellent adsorption capacity for ammonia (9.79 mmol/g) which could be utilized as an ammonia adsorbent.