Browse > Article
http://dx.doi.org/10.14478/ace.2016.1025

Studies on Adsorption and Desorption of Ammonia Using Covalent Organic Framework COF-10  

Yang, Heena (Department of Materials Chemistry and Engineering, College of Engineering, Konkuk University)
Kim, Iktae (Department of Materials Chemistry and Engineering, College of Engineering, Konkuk University)
Ko, Youngdon (Department of Materials Chemistry and Engineering, College of Engineering, Konkuk University)
Kim, Shindong (Environment & Chemistry solution)
Kim, Whajung (Department of Materials Chemistry and Engineering, College of Engineering, Konkuk University)
Publication Information
Applied Chemistry for Engineering / v.27, no.3, 2016 , pp. 265-269 More about this Journal
Abstract
Ammonia gas as a hydrogen source has received great attention since the importance of hydrogen gas as a clean energy source increased. However, ammonia is toxic and corrosive to metal such that the absorbent that can store and transport ammonia became an important issue. As an effort to solve this, a large pored covalent organic framework, COF-10 was proposed as an adsorbent for storage and safe transportation of ammonia. During the ammonia adsorption process, boron in COF-10 structure can act as a Lewis acid site and bind with ammonia. In this study, COF was synthesized and its structure was identified by BET, XRD and FT-IR. The adsorption characteristics of COF were investigated by TPD and adsorption isotherm. The COF-10 showed an excellent adsorption capacity for ammonia (9.79 mmol/g) which could be utilized as an ammonia adsorbent.
Keywords
adsorption; ammonia; COF-10; Langmuir-Freundlich;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Phillips, Control and pollution prevention options for ammonia emissions, EPA-456/R-95-002, 1-69, ViGYAN Incorporated, VA, USA (1995).
2 D. A. Kramer, Mineral and Commodities Summaries, US Geological Survey, Washington, USA (2007).
3 Y. Song and J. H. Dai, Mechanisms of dopants influence on hydrogen uptake in COF-108: A first principles study, Int. J. Hydrogen Energy, 38, 14668-14674 (2013).   DOI
4 T. G. Glover, G. W. Peterson, J. B. DeCoste, and M. A. Browe, Adsorption of ammonia by sulfuric acid treated zirconium hydroxide, Langmuir, 28(28), 10478-10487 (2012).   DOI
5 A. Qajar, M. Peer, M. R. Andalibi, R. Rajagopalan, and H. C. Foley, Enhanced ammonia adsorption on functionalized nanoporous carbons, Microporous. Mesoporous. Mater., 218, 15-23 (2015).   DOI
6 A. M. B. Furtado, Y. Wang, T. G. Glover, and M. D. LeVan, MCM-41 impregnated with active metal sites:Synthesis, characterization, and ammonia adsorption, Microporous. Mesoporous. Mater., 142, 730-739 (2011).   DOI
7 C. Petit, B. Mendoza, and T. J. Bandosz, Reactive adsorption of ammonia on Cu-based MOF/graphene composites, Langmuir, 26(19), 15302-15309 (2010).   DOI
8 T. Yan, T. X. Li, H. Li, and R. Z. Wang, Experimental study of the ammonia adsorption characteristics on the composite sorbent of $CaCl_{2}$ and multi-walled carbon nanotubes, Int. J. Refrig., 46, 165-172 (2014).   DOI
9 C. H. Christensen, R. Z. Sorensen, T. Johannessen, U. J. Quaade, K. Honkala, T. D. Elmoe, R. Kohler, and J. K. Norskov, Metal ammine complexes for hydrogen storage, J. Mater. Chem., 15, 4106-4108 (2005).   DOI
10 D. Beaudoin, T. Maris, and J. D. Wuest, Constructing monocrystalline covalent organic networks by polymerization, Nat. Chem., 5, 830-834 (2013).   DOI
11 A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Martzger, and O. M. Yaghi, Porous, crystalline, covalent organic frameworks, Science, 310(5751), 1166-1170 (2005).   DOI
12 Z. Xiang and D. Cao, Porous covalent-organic materials: synthesis, clean energy application and design, J. Mater. Chem. A, 1, 2691-2718 (2012).
13 J. F. Dienstmaier, A. M. Gigler, A. J. Goetz, P. Knochel, T. Bein, A. Lyapin, S. Reichlmaier, W. M. Heckl, and M. Lackinger, Synthesis of well-ordered COF monolayers: surface growth of nanocrystalline precursors versus direct on-surface polycondensation, ACS Nano, 5(12), 9737-9745 (2011).   DOI
14 Y. Xu, S. Jin, H. Xu, A. Nagai, and D. Jiang, Conjugated microporous polymers: design, synthesis and application, Chem. Soc. Rev., 42, 8012-8031 (2013).   DOI
15 Q. Liu, Z. Tang, M. Wu, and Z. Zhou, Design, preparation and application of conjugated microporous polymers, Polym. Int., 63(3), 381-392 (2014).   DOI
16 E. L. Spitler, M. R. Giovino, S. L. White, and W. R. Dichtel, A mechanistic study of Lewis acid-catalyzed covalent organic framework formation, Chem. Sci., 2, 1588-1593 (2011).   DOI
17 S. B. Kalidindi, C. Wiktor, A. Ramakrishnan, J. Webing, A. Schneemann, G. V. Tendeloo, and R. A. Fischer, Lewis base mediated efficient synthesis and solvation-like host-guest chemistry of covalent organic framework-1, Chem. Commun., 49, 463-465 (2013).   DOI
18 J. R. Hunt, C. J. Doonan, J. D. LeVangie, A. P. Cote, and O. M. Yaghi, Reticular synthesis of covalent organic borosilicate frameworks, J. Am. Chem. Soc., 130(36), 11872-11873 (2008).   DOI
19 L. Zhao and C. Zhong, Negative thermal expansion in covalent organic framework COF-102, J. Phys. Chem. C., 113(39), 16860-16862 (2009).   DOI
20 J. Zhang, L. Wang, N. Li, J. Liu, W. Zhang, N. Zhou, and X. Zhu, A novel azobenzene covalent organic framework, Cryst. Eng. Comm., 16, 6547-6551 (2014).   DOI
21 Y. Peng, T. Ben, Y. Jia, D. Yang, H. Zhao, S. Qiu, and X. Yao, Dehydrogenation of ammonia borane confined by low-density porous aromatic famework, J. Phys. Chem., 116(49), 25694-25700 (2012).
22 C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, and O. M. Yaghi Exceptional ammonia uptake by a covalent organic framework, Nat. Chem., 2, 235-238 (2010).   DOI
23 A. P. Cote, Reticular Synthesis of Microporous and Mesoporous 2D Covalent-Organic Frameworks, J. Am. Chem. Soc., 129(43), 12914-12915 (2007).   DOI
24 G. Guan, T. Kida, K. Jusakabe, K. Kimura, E. Abe, and A. Yoshida, Photocatalytic activity of CdS nanoparticles incorporated in titanium silicate molecular sieves of ETS-4 and ETS-10, Appl. Catal. A, 71-78 (2005).